
HW 23 - Solutions

Problem 1
For n = 1040 male college soccer players, the correlation between height and weight is about r = 0.75.
The sample means for heights and weights are about x̄ = 71 in and ȳ = 166 lbs, and the sample standard
deviations are about sx = 2.5 in and sy = 16 lbs.

(a) Find the least squares regression line for predicting weight from height. What proportion of the
variability in weights is explained by a linear fit on height?

In a SLR model, the estimate for the slope is β̂1 =
∑

(xi−x̄)(yi−ȳ)∑
(xi−x̄)2 = r

sy
sx

and the estimate for the intercept is

β̂0 = ȳ − β̂1x̄. Recall that s2
x = 1

n−1
∑

(xi − x̄)2 and r = 1
n−1

∑
(xi−x̄)(yi−ȳ)

sxsy
. Thus β̂1 = (0.75)(16)/2.5 = 4.8

inches/lb and β̂0 = 166− (4.8)(71) = −174.8 inches.

(b) Find the fitted weight for a 66 inch player and for a 76 inch player. Explain how these fitted values
illustrate the regression towards the mean effect in an answer that involves standard deviations relative
to the respective means. Hint: You textbook mentions “regression towards mediocrity” but if you
google this phrase, you’ll find lots of examples and wiki pages on this phenomena!

-174.89 + 4.8*66

## [1] 141.91

-174.89 + 4.8*76

## [1] 189.91

(c) Use the sample correlation and standard deviation of the weights to find the root mean squared error
for the simple regression model. Explain what this number represents in this context.

Please see the class notes from 12/5/22 for a solution to this problem.
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Problem 2
Consider the no-intercept linear regression model

Yi | Xi = xi ∼ N(βxi, σ2), i = 1, . . . , n.

We should include an intercept in the model even if we believe the mean response when x = 0 should be 0,
however working with the no-intercept model can help understand the more complicated model since here β
is a scalar rather than a vector.

(a) Show that the least squares estimate for β is β̂ =
∑

i
xiYi∑
i
x2
i

= (X′X)−1X′Y, where X is the n× 1 matrix
(vector) of xi values and Y is the n× 1 vector of Yi values.

The least squares estimate for β solves min
∑

(yi− ŷi)2 with respect to β. To find this minimizer, we consider

∂

∂β

∑
(yi − βxi)2 =

∑
2(yi − βxi)(−xi)

set= 0

which solving for β produces the least squares estimate

β̂LSE =
∑

yixi
∑

x2
i

since we can verify this is a minimum by checking

∂

∂β
2
∑

(−xi)(yi − βxi) = 2
∑

(−xi)2 > 0.

(b) Write the joint log-likelihood of (β, σ2) and explain why the MLE for β is the same as the least squares
estimate for β.

Lik(β, σ) =
n∏
i=1

f(yi;β, σ) =
n∏
i=1

1√
2πσ

e−
(yi−βxi)2

2σ2 =
(

1√
2π

)n( 1
σ

)n
exp{− 1

2σ2

n∑
i=1

(yi − βxi)2}

Now we find thee MLE for β by setting the first derivative of the (log) likelihood equal to zero and solving
for β̂:

lnLik(β, σ) = const+ n(0− ln(σ))−
∑

(yi − βxi)2

2σ2

∂

∂β
lnLik(β, σ) =

∑
xi(yi − βxi)2

σ2
set= 0 and thus β̂MLE =

∑
yixi∑
x2
i

= β̂LSE

(c) Find the mean and variance of β̂.

E
(
β̂
)

= E

(∑
xiYi∑
x2
i

)
=
∑
xiE(Yi)∑
x2
i

=
∑
xi(βxi)∑
x2
i

= β
∑
x2
i∑

x2
i

= β
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and

V ar(β̂) = V ar

(∑
xiYi∑
x2
i

)
=
(

1∑
x2
i

)2
V ar

(∑
xiYi

)
=
(

1∑
x2
i

)2∑
i

∑
j

xixjCov(Yi, Yj)

=
(

1∑
x2
i

)2∑
i

∑
j

xixjCov(εi, εj)

=
(

1∑
x2
i

)2∑
i

∑
j=i

xixjCov(εi, εj)

=
(

1∑
x2
i

)2 n∑
i=1

xixiV ar(εj)

=
( ∑

x2
i

(
∑
x2
i )2

)
σ2

= σ∑
x2
i

Also, recall from our class notes that we expect V ar(Y ) = σ2(XTX)−1 and here, XT =
(
x1x2 . . . xn

)
so

XTX =
∑
x2
i .
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Problem 3
A simple exponential decay models says that the concentration, C(t) of a pesticide remaining after time t is
C(t) = C0e

−γt for t > 0 where C0 is the initial concentration and γ is a constant that determines the rate of
decay.

(a) Show how taking the natural log of both sides of the equation above results in a linear model for
Y = log(C(t)) on t. What are the slope and intercept?

ln
(
C(t)

)
= ln

(
C0e

−γt) = ln(C0)− γt

is the equation for a line where the intercept is ln(C0) and the slope is −γ.

(b) If you have data on concentrations at n different times, ti, you could estimate γ by fitting a SLR of Yi
on ti. This implicitly assumes an additive error term εi that is approximately normally distributed.
Write out the implied model for C(t) and describe how error enters this model.

If we observe ti for i = 1, . . . , n, and regress these observations on Y = lnC(t) then we are implying the model
for Y is:

Yi = ln
(
C0e

−γt) = ln(C0)− γti + εi, where εi
IID∼ Normal.

That is, C(ti) = C0e
−γtieεi where εi

IID∼ Normal. Hence the error enters this model as a multiplicative
factor, rather than an additive one.
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