HW 23 - Solutions

Problem 1

For $n=1040$ male college soccer players, the correlation between height and weight is about $r=0.75$. The sample means for heights and weights are about $\bar{x}=71$ in and $\bar{y}=166 \mathrm{lbs}$, and the sample standard deviations are about $s_{x}=2.5$ in and $s_{y}=16 \mathrm{lbs}$.
(a) Find the least squares regression line for predicting weight from height. What proportion of the variability in weights is explained by a linear fit on height?
In a SLR model, the estimate for the slope is $\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=r \frac{s_{y}}{s_{x}}$ and the estimate for the intercept is $\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$. Recall that $s_{x}^{2}=\frac{1}{n-1} \sum\left(x_{i}-\bar{x}\right)^{2}$ and $r=\frac{1}{n-1} \frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{s_{x} s_{y}}$. Thus $\hat{\beta}_{1}=(0.75)(16) / 2.5=4.8$ inches $/ \mathrm{lb}$ and $\hat{\beta}_{0}=166-(4.8)(71)=-174.8$ inches.
(b) Find the fitted weight for a 66 inch player and for a 76 inch player. Explain how these fitted values illustrate the regression towards the mean effect in an answer that involves standard deviations relative to the respective means. Hint: You textbook mentions "regression towards mediocrity" but if you google this phrase, you'll find lots of examples and wiki pages on this phenomena!

```
-174.89 + 4.8*66
```

\#\# [1] 141.91
$-174.89+4.8 * 76$
\#\# [1] 189.91
(c) Use the sample correlation and standard deviation of the weights to find the root mean squared error for the simple regression model. Explain what this number represents in this context.
Please see the class notes from $12 / 5 / 22$ for a solution to this problem.

Problem 2

Consider the no-intercept linear regression model

$$
Y_{i} \mid X_{i}=x_{i} \sim N\left(\beta x_{i}, \sigma^{2}\right), \quad i=1, \ldots, n
$$

We should include an intercept in the model even if we believe the mean response when $x=0$ should be 0 , however working with the no-intercept model can help understand the more complicated model since here β is a scalar rather than a vector.
(a) Show that the least squares estimate for β is $\hat{\beta}=\frac{\sum_{i} x_{i} Y_{i}}{\sum_{i} x_{i}^{2}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$, where \mathbf{X} is the $n \times 1$ matrix (vector) of x_{i} values and \mathbf{Y} is the $n \times 1$ vector of Y_{i} values.
The least squares estimate for β solves min $\sum\left(y_{i}-\hat{y}_{i}\right)^{2}$ with respect to β. To find this minimizer, we consider

$$
\frac{\partial}{\partial \beta} \sum\left(y_{i}-\beta x_{i}\right)^{2}=\sum 2\left(y_{i}-\beta x_{i}\right)\left(-x_{i}\right) \stackrel{\text { set }}{=} 0
$$

which solving for β produces the least squares estimate

$$
\hat{\beta}_{L S E}=\sum y_{i} x_{i} \sum x_{i}^{2}
$$

since we can verify this is a minimum by checking

$$
\frac{\partial}{\partial \beta} 2 \sum\left(-x_{i}\right)\left(y_{i}-\beta x_{i}\right)=2 \sum\left(-x_{i}\right)^{2}>0 .
$$

(b) Write the joint log-likelihood of $\left(\beta, \sigma^{2}\right)$ and explain why the MLE for β is the same as the least squares estimate for β.

$$
\operatorname{Lik}(\beta, \sigma)=\prod_{i=1}^{n} f\left(y_{i} ; \beta, \sigma\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(y_{i}-\beta x_{i}\right)^{2}}{2 \sigma^{2}}}=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n}\left(\frac{1}{\sigma}\right)^{n} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta x_{i}\right)^{2}\right\}
$$

Now we find thee MLE for β by setting the first derivative of the (log) likelihood equal to zero and solving for $\hat{\beta}$:

$$
\begin{array}{r}
\ln \operatorname{Lik}(\beta, \sigma)=\text { const }+n(0-\ln (\sigma))-\frac{\sum\left(y_{i}-\beta x_{i}\right)^{2}}{2 \sigma^{2}} \\
\frac{\partial}{\partial \beta} \ln \operatorname{Lik}(\beta, \sigma)=\frac{\sum x_{i}\left(y_{i}-\beta x_{i}\right)^{2}}{\sigma^{2}} \stackrel{\text { set }}{=} 0 \text { and thus } \hat{\beta}_{M L E}=\frac{\sum y_{i} x_{i}}{\sum x_{i}^{2}}=\hat{\beta}_{L S E}
\end{array}
$$

(c) Find the mean and variance of $\hat{\beta}$.

$$
E(\hat{\beta})=E\left(\frac{\sum x_{i} Y_{i}}{\sum x_{i}^{2}}\right)=\frac{\sum x_{i} E\left(Y_{i}\right)}{\sum x_{i}^{2}}=\frac{\sum x_{i}\left(\beta x_{i}\right)}{\sum x_{i}^{2}}=\frac{\beta \sum x_{i}^{2}}{\sum x_{i}^{2}}=\beta
$$

and

$$
\begin{aligned}
\operatorname{Var}(\hat{\beta}) & =\operatorname{Var}\left(\frac{\sum x_{i} Y_{i}}{\sum x_{i}^{2}}\right) \\
& =\left(\frac{1}{\sum x_{i}^{2}}\right)^{2} \operatorname{Var}\left(\sum x_{i} Y_{i}\right) \\
& =\left(\frac{1}{\sum x_{i}^{2}}\right)^{2} \sum_{i} \sum_{j} x_{i} x_{j} \operatorname{Cov}\left(Y_{i}, Y_{j}\right) \\
& =\left(\frac{1}{\sum x_{i}^{2}}\right)^{2} \sum_{i} \sum_{j} x_{i} x_{j} \operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right) \\
& =\left(\frac{1}{\sum x_{i}^{2}}\right)^{2} \sum_{i} \sum_{j=i} x_{i} x_{j} \operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right) \\
& =\left(\frac{1}{\sum x_{i}^{2}}\right)^{2} \sum_{i=1}^{n} x_{i} x_{i} \operatorname{Var}\left(\epsilon_{j}\right) \\
& =\left(\frac{\sum x_{i}^{2}}{\left(\sum x_{i}^{2}\right)^{2}}\right) \sigma^{2} \\
& =\frac{\sigma}{\sum x_{i}^{2}}
\end{aligned}
$$

Also, recall from our class notes that we expect $\operatorname{Var}(Y)=\sigma^{2}\left(X^{T} X\right)^{-1}$ and here, $X^{T}=\left(x_{1} x_{2} \ldots x_{n}\right)$ so $X^{T} X=\sum x_{i}^{2}$.

Problem 3

A simple exponential decay models says that the concentration, $C_{(t)}$ of a pesticide remaining after time t is $C_{(t)}=C_{0} e^{-\gamma t}$ for $t>0$ where C_{0} is the initial concentration and γ is a constant that determines the rate of decay.
(a) Show how taking the natural log of both sides of the equation above results in a linear model for $Y=\log \left(C_{(t)}\right)$ on t. What are the slope and intercept?

$$
\ln \left(C_{(t)}\right)=\ln \left(C_{0} e^{-\gamma t}\right)=\ln \left(C_{0}\right)-\gamma t
$$

is the equation for a line where the intercept is $\ln \left(C_{0}\right)$ and the slope is $-\gamma$.
(b) If you have data on concentrations at n different times, t_{i}, you could estimate γ by fitting a SLR of Y_{i} on t_{i}. This implicitly assumes an additive error term ϵ_{i} that is approximately normally distributed. Write out the implied model for $C_{(t)}$ and describe how error enters this model.
If we observe t_{i} for $i=1, \ldots, n$, and regress these observations on $Y=\ln C_{(t)}$ then we are implying the model for Y is:

$$
Y_{i}=\ln \left(C_{0} e^{-\gamma t}\right)=\ln \left(C_{0}\right)-\gamma t_{i}+\epsilon_{i}, \quad \text { where } \epsilon_{i} \stackrel{I I D}{\sim} \text { Normal. }
$$

That is, $C_{\left(t_{i}\right)}=C_{0} e^{-\gamma t_{i}} e^{\epsilon_{i}} \quad$ where $\epsilon_{i} \stackrel{I I D}{\sim}$ Normal. Hence the error enters this model as a multiplicative factor, rather than an additive one.

