HW 2

Problem 1 (4.24) Suppose $X_{1}, \ldots X_{n}$ are jointly distributed discrete RVs with expectations $E\left(X_{i}\right)$. Suppose Y is a linear function of the X_{i} so that $Y=a+b \sum_{i=1}^{n} b_{i} X_{i}$. For $n=2$, prove that

$$
E(Y)=a+\sum_{i=1}^{n} b_{i} E\left(X_{i}\right)
$$

Problem 2 (4.33) Prove Chebyshev's inequality for discrete RVs.

Problem 3 (4.63) As in HW $1 \# 1$, let X and Y have the joint density

$$
f(x, y)=\frac{6}{7}(x+y)^{2} \mathbb{I}\{0 \leq x \leq 1\} \mathbb{I}\{0 \leq y \leq 1\}
$$

(a) Find the covariance of X and Y.
(b) Find $E(Y \mid X=x)$ for $x \in[0,1]$.

