Topic: Comparing 2 Samples

$$
(c h .11 .1-11.2)
$$

Setting: $\left(X_{1}, \ldots, X_{n}\right)$ identically distbtied w/ a continuous density, $f(x ; \theta)$
and
$\left(Y_{1}, \ldots, Y_{m}\right)$ identically distlot'ed wi a continuous density, $f(y ; \lambda)$

Recall some standard notation:

$$
\left\{\begin{array}{l}
E(X)=\mu_{x} \quad \approx \hat{\mu}_{x}=\bar{x} \\
\operatorname{Var}(X)=\sigma_{x}^{2} \quad \approx \hat{\bar{T}}_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
\operatorname{Cov}(x, y)=\sigma_{x y} \approx \bar{\sigma}_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{array}\right\} \begin{aligned}
& \text { sample estimates } \\
& f_{\text {ram }} \\
& x_{\text {ohs }}=\left(x_{1}, \ldots, x_{n}\right) \\
& \text { and } \\
& y_{\text {oas }}=\left(y_{1}, \ldots, y_{n}\right)
\end{aligned}
$$

And, recall the properties of expectation from our review earlier in the semester. (ie. (h.4)

Note: Usually we are interested in whether or not the differences boon each group are discernably different from zero.

Case 1: Inde pendent Samples
Setting: $\left(X_{1}, \ldots, X_{n}\right)$ are independent observations $\left(Y_{1}, \ldots, Y_{m}\right)$ are independent observations and
$\left(x_{1}, \ldots, x_{n}\right)$ is indepent fran $\left(y_{1}, \ldots, y_{m}\right)$
Method: Consider the RV $W=\bar{X}-\bar{Y}$ and use properties of moependence to characterize the mort probable values of $\mu_{x}-\mu_{y}$.

Independence

- Between groups
- Among individual observations win each group

Approaches

- Normal Method (parametric)
- Mann-Whitney Test (non-parametric)

Case 2: Dependent (Paired) Samples
Setting: $m=n$ and $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{m}\right)$ are dependent in a particular way, namely in a way that elements of each can be pared leg. as befere-after observations). And $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are independent pairs.

Method: Create a data vector of the differences btwn each pared data point

$$
d_{i}=x_{i}-y_{i}
$$

and proceed wi 1 -sample methods for the TID vector of differences

Approaches $\left(D_{1}, \ldots, D_{n}\right)$.

- Normal Method (parametric)
- Signed-Rank Test (non-parametric)

Group Hark - stewardship and inference

Normal Theory for Comparing 2 Samples
General Setting o Relative Effeciency:

$$
E\left(X_{i}\right)=\mu_{x}
$$

For data $X_{1}, \ldots, X_{n} \mathbb{C}$ w/ $\operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}$ and y_{1}, \ldots, y_{m} are ITD w/ $E\left(y_{j}\right)=\mu_{y}$

$$
\begin{aligned}
& E\left(y_{j}\right)=\mu_{y} \\
& \operatorname{Var}\left(y_{j}\right)=\sigma_{r}^{2}
\end{aligned}
$$

the RV $W=\bar{X}-\bar{Y}$ has
and

$$
\begin{aligned}
& =\frac{1}{n} \sum_{i=1}^{n} E\left(X_{i}\right)-\frac{1}{m} \sum_{i=1}^{m} E\left(Y_{i}\right) \\
& =\mu_{x}-\mu_{y}
\end{aligned}
$$

$$
\operatorname{Var}(\omega)=\operatorname{Var}(\bar{X}-\bar{y})=\operatorname{Var}(\bar{X})+\operatorname{Var}(\bar{y})-2 \operatorname{Cov}(\bar{X}, \bar{y})
$$

If any X_{i} are independent fran any Y_{j} then
then $\operatorname{Cov}\left(x_{i}, y_{j}\right)=0$ and $\operatorname{Cov}(\bar{X}, \bar{Y})=0$

$$
\operatorname{Var}(w)=\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}
$$

Note: If the X_{i} 's and Y_{j}^{\prime} s are positively correlated, and $n=m$, then pairing is more effective than not pairing.

Furthermore, if $\left(X_{1}, \ldots, X_{n}\right)$ are Normally distbted then.

$$
\bar{X} \sim N\left(\mu_{x}, \sigma_{x}^{2} / n\right)
$$

similarly for $\left(Y_{1}, \ldots, Y_{m}\right)$ Nanally distbted, $\bar{Y} \sim N\left(\mu_{y}, \sigma_{y}^{2} / m\right)$ and

$$
W=\bar{X}-\bar{Y} \sim N\left(\mu_{x}-\mu_{y}, \frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}-2 \sigma_{\bar{x}}\right) .
$$

This implies that

$$
\frac{W-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}-2 \sigma_{\bar{x}}}} \sim N(0,1)
$$

Which is all fine t good unless σ_{x}^{2} and σ_{y}^{2} are unknown.
Q) If $\sigma_{x}^{2} \rightarrow \sigma_{y}^{2}$ are unknown, can we still find some pivot statist w) W?

Recall: For x_{1}, \ldots, x_{n} ID $N\left(\mu, \sigma^{2}\right)$ where both μ, σ^{2}

$$
\psi_{\substack{\text { see } \\ \text { corllary } B \\ \text { ch. } 6}} \frac{\bar{x}-\mu \cdot 198}{\operatorname{sd}(\bar{x})} \sim N(0,1) \text { and } \frac{\bar{x}-\mu}{\frac{s_{x}}{\sqrt{n}}} \sim t_{(n-1)}
$$

Case 2: Paired Samples
Note: We are starting w/ 1-Sample T-test x CI case 2

If data pairs $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ are II and $D_{i}=X_{i}-Y_{i}$ where X_{1}, \ldots, X_{n} are (11) w/

$$
\begin{aligned}
& E\left(X_{i}\right)=\mu_{x} \\
& \operatorname{Var}\left(X_{i}\right)=\sigma_{x}^{2}
\end{aligned}
$$

and y_{1}, \ldots, y_{n} are IID w/

$$
\begin{aligned}
& E\left(Y_{j}\right)=\mu_{y} \\
& \operatorname{Var}\left(Y_{j}\right)=\sigma_{y}^{2}
\end{aligned}
$$

then $E\left(D_{i}\right)=\mu_{x}-\mu_{y}=\mu_{D}$

$$
\begin{aligned}
\operatorname{Var}\left(D_{i}\right) & =\sigma_{x}^{2}+\sigma_{y}^{2}-2 \sigma_{x y} \\
& =\sigma_{x}^{2}+\sigma_{y}^{2}-2 \rho \sigma_{x} \sigma_{y}=\sigma_{D}^{2}
\end{aligned}
$$

and D, \ldots, D_{n} are independent,
Furthermore, If D_{1}, \ldots, D_{n} are Normally distbt'ed then

$$
t=\frac{\bar{D}-\mu_{D}}{S_{\bar{D}}} \sim t_{(n-1)}
$$

where $S_{\bar{D}}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(D_{i}-\bar{D}\right)^{2}}$ is an estimate for σ_{D}.

Hence

quartiles note: $t(\alpha / 2)=-t_{(1-\alpha / 2)}$ by symantry and we have that

$$
\begin{aligned}
& 1-\alpha=\operatorname{Pr}\left(t_{\left(\alpha_{2}\right)}^{*} \leq \frac{D-\mu_{D}}{s_{\bar{D}}} \leqslant t_{(1-\alpha)}^{*}\right) \\
& =\operatorname{Pr}\left(t_{\left(\frac{\gamma}{2}\right)}^{*} s \bar{D} \leq \bar{D}-\mu_{D} \leq t_{(1-\alpha / 2)}^{*} s \bar{D}\right) \\
& =\operatorname{Pr}\left(-\bar{D}+t^{*}\left(\alpha_{\bar{A}} s_{\bar{D}} \leq-\mu_{D} \leq-\bar{D}+t^{*}(1-\alpha /)^{s_{\bar{D}}}\right)\right. \\
& =\operatorname{Pr}\left(\bar{D}-t_{(\alpha 2 \lambda}^{*} S_{\bar{D}} \geqslant \mu_{D} \geqslant \bar{D}-t_{(1-\alpha)}^{*} S_{\bar{D}}\right) \\
& =\operatorname{Pr}\left(\bar{D}+t_{1-\alpha / 2)}^{*} S_{\bar{D}} \geqslant \mu_{D} \geqslant \bar{D}-t_{\left(1-\sigma_{2}\right)}^{*} S_{\bar{D}}\right)
\end{aligned}
$$

Q) What is random?

So a $(1-\alpha) 100 \%$ CI for μ_{D} is:

$$
\bar{D}_{o b s} \pm\left[t_{(1-\alpha / 2 ; d f=n-1)}^{*} \times S_{\bar{D}}\right]
$$

And an α-level significance test of

$$
\text { Ho: } \mu_{D}=0 \text { us. } H_{1}: \mu_{D} \neq 0
$$

using test statistic $t=\frac{\bar{D}-\mu_{D}}{S_{\bar{D}}} \stackrel{H_{0}}{\sim} t_{(n-1)}$
will reject tho far

$$
\left\{D:|\bar{D}|>t^{*}(1-\alpha / 2 ; d f=n-1)^{x} S_{\bar{D}}\right\} .
$$

Case 1: Independent Samples
Two-Sample T-test x (I for $\left(\mu_{x}-\mu_{y}\right)$
Now, suppose any of the x_{1}, \ldots, x_{n} are \perp of any of the Y_{1}, \ldots, Y_{m} and m may differ fran n.
We still have $\left.w \sim N\left(\mu_{x}-\mu_{y}, \frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{y}^{2}}{m}-\right)_{x_{y}}\right)$. and $\frac{W-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\left.\frac{\sigma_{x}^{2}}{n}+\frac{\sigma_{x}^{2}}{m}-2\right)_{x}}} \sim N(0, l)$

Which we could use to find a test or CI if we knew σ_{x}^{2} and σ_{y}^{2}.

$$
W=\bar{X}-\bar{Y} \quad \begin{array}{ll}
x_{1}, \ldots, x_{n} \\
y_{1}, \ldots, y_{m}
\end{array}
$$

Q) How can we estimate $\operatorname{Var}(W)$, (which is a weighted average of each samples variance)?

One idea is to approximate

$$
\operatorname{Var}(W)=\operatorname{Var}(\bar{x}-\bar{y}) \approx \frac{s_{x}^{2}}{n}+\frac{s_{y}^{2}}{m}
$$

This is helpful if $\sigma_{x} \neq \sigma_{y}$ but it is challenging to find the distrin of:

$$
\frac{w-\left(\mu_{x}-\mu_{7}\right)}{\sqrt{5 x^{2} / n+5 \nu^{2} / n}} \approx t_{(\nu)}
$$

where $v=\frac{\left[\left(S_{x}^{2} / n\right)+\left(S_{y}^{2} / m\right)\right]}{\frac{S_{x}^{2} / n}{n-1}+\frac{S_{y}^{2} / m}{m+1}}$ is rounded to the nearest integer.
called nearest
satterwarites approxmation
Q) What would an ethical stat practioner do before using this to conduct a test or find a CI for $\mu_{x}-\mu_{y}$?

It turns out that, if we can assume $\sigma_{x}=\sigma_{y}$, then using

$$
\operatorname{Var}(W)=\operatorname{Var}(\bar{X}-\bar{y}) \approx S_{p}^{2}\left(\frac{1}{n}+\frac{1}{m}\right)
$$

where

$$
S_{p}^{2}=\frac{(n-1) S_{x}^{2}+(m-1) S_{y}^{2}}{m+n-2}
$$

yields a pivot statistic:

$$
t=\frac{(\bar{X}-\bar{Y})-\left(\mu_{x}-\mu_{y}\right)}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim t_{(m+n-2)}
$$

And so

$$
\begin{aligned}
& 1-\alpha=\operatorname{Pr}\left(t_{\left(x_{2}\right)}^{*} \leq \frac{(\bar{x}-\bar{y})-\left(\mu_{x}-\mu_{y}\right)}{\delta_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}} \leq t_{\left(1-\frac{-\alpha}{2}\right)}^{*}\right) \\
& =\operatorname{Pr}\left(t^{*}\left(x_{2}\right)^{x} S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}} \leq(\bar{x}-y)-\left(\mu_{x}-\mu_{y}\right) \leq t_{(1-i)^{*} S_{p} \gamma^{\frac{1}{n}+\frac{1}{m}}}\right) \\
& =\operatorname{Pr}\left(\left((\bar{x}-\bar{y})+t_{\left(1-\frac{\pi}{2}\right)^{*}}^{*} \operatorname{S}_{\rho} \sqrt{\frac{1}{n}+\frac{1}{m}} \geqslant\left(\mu_{x}-\mu_{y}\right) \geqslant(\bar{x}-\bar{y})-t_{(1-\bar{z}}^{*} \sqrt{\frac{1}{n+1}+\frac{1}{m}},\right.\right.
\end{aligned}
$$

Thus for ($\bar{x}_{\text {obs }}-\bar{y}_{0 b s}$), a (1-2) 100% CI for $\left(\mu_{x}-\mu_{y}\right)$ is:

$$
\left(\bar{x}_{\text {obs }}-\bar{y}_{\text {obs }}\right) \pm\left[t_{\left(1-\frac{-}{2}\right)}^{*} \times s_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}\right]
$$

And for $H_{0}: \mu_{x}-\mu_{y}=0$ w/ one of

$$
H_{1}: \mu_{x}-\mu_{y}>0 \text { or } H_{2}: \mu_{x}-\mu_{y}<0 \text { or } H_{3}: \mu_{x}-\mu_{y} \neq 0
$$

as the alternative, we can use the test statistic

$$
t=\frac{(\bar{x}-\bar{y})-0}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}} \stackrel{H_{0}}{\sim} t_{(n+m-2)}
$$

w/ corresponding rejection regions:

$$
\begin{aligned}
& H_{1}:\{(x, y): t>t(1-\alpha)\} \text { or } H_{2}:\{(x, y): t<t(\alpha)\} \text { or } \\
& H_{3}:\left\{(x, y):|t|>t\left(1-\frac{\alpha}{2}\right)\right\} \quad
\end{aligned}
$$

Note:
This is actually the (generalized) LHR test for $H_{0}: \mu_{x}-\mu_{y}=0$ us, $H_{1}: \mu_{x}-\mu_{y} \neq 0$!
(See proof an pg $4 / 26$)

Power of a 2-Sample t-test
Power $=\operatorname{Pr}$ (Reject $H_{0} \mid H_{1}$ is true) power analysis is a crucial part of planning an experiment. Typically, this involves solving" sample size determination" questions, before any data is collected.

Useful facts about the power of this test:
(1) The larger the true difference $\left|\mu_{x}-\mu_{y}\right|$ the greater the power
2) The larger the sig. level α, the greater the power
3) The larger the sample sizes $n+m$, the greater the power.
4) If $\operatorname{Var}\left(X_{i}\right)=\operatorname{Var}\left(Y_{j}\right)=\sigma^{2}$, the smaller the value of σ^{2} corresponds to greater power.
See pg $433 \times 2 / 34$ for power calculation assuming $n=m$ and that n is large enough for the CLT to apply

Detour: Absolute Value Hearisic
Less than - less than:
If $|x| \leq$ cost then

Great OR than:
If $|X| \geqslant$ canst then

Topic: Experimental Design (4n.1.1)
"The proper design of a scientific study is far more important than the specific techniques used in the analysis."
"a well-desigued study is typically simple to analyze... a poorly-designed study or a botched expt often cannot be sawaged even w/ the most sophisticated analysis"

Types of Statistical Studies:

Random Sampling

	experiment data	observational
experimental units	observational units	

Also, studies can be a mixture of both experiments x observational studies
ex) blocked experimental study

Random Sampling Selection
This is what is meant by "randan sample of a population". In theory, randan sampling is the best way to ensure the sample of data is representative of the population of interest. Randan sampling mitigates any overt or unintentional selection bias and ensures any confounding features are also randomly distributed throughout the sample.

In practice, randan selection is rarely possible and various sampling strategies are used to "obtain "psendo-randan" samples
or "representative" samples instead. A complete discussion of the sampling strategies is beyond the scope of this class but it is crucial to be aware of this because most statistical theory relies upan the assumption of IID (randan) data.

Non-parametric Approaches
Case 1: Independent Samples
The Mann-Whitney Test
(AKA Wilcoxon Rank sum test)
If $\mu_{x}-\mu_{y}=0$ is actually true, and if data are randomly assigned a treatment, then any observed difference in $\bar{x}_{b b}-\bar{y}_{\mathrm{b}} \mathrm{bs}$ is due to chance/lock and not the treatment.

Procedure :

1) Group both samples together x rank fam least to greatest.
2) Add the ranks of each data value that is from the first treatment group.
3) We have curdence against $H_{0}: \mu_{x}-\mu_{y}=0$ if the summed rank is extreme.

Case 2: Paired Samples
The Signed -Rank Test
(AKA wilcoran sighed rank test)
Using the same idea as for the Mann-Whitney test, we consider ranks of the data rather than the oloserved values of the data.

Proceedure:

1) Calculate the vector of paired differences

$$
D=\left(D_{1}, \ldots, D_{n}\right)
$$

then rank the magnitude of the differences from least to greatest
2) Calculate the sum of the (magnitude) ranks of D that are positive.

If $\mu_{x}-\mu_{y}=0$ is correct, then wend expect about half of the differences to be positive, and half negative. The sum in (2) will not be too extreme in this case.

Group Worksheet A Review

Topic: Comparing >2 means
w ANOVA
One-Way ANOUA
Setting + Notation:

$$
y_{i j}=M+\alpha_{i}+\varepsilon_{i j}, \text { where } \varepsilon_{i j} \stackrel{\text { respanse/measurement }}{\sim} N\left(0, \sigma^{2}\right)
$$ and $\sum_{i=1}^{I} \alpha_{i}=0$

unknown constant "error variance"

with observation
of i^{+h} frt.
$i^{\text {th }}$ try "effect"
overall mean
So $E\left[Y_{i}\right]=\mu+\alpha_{i}$ and $\alpha_{i}-\alpha_{k}=\left\{\begin{array}{l}\text { difference btw n } \\ \text { expected values of } \\ \text { the response under } \\ \text { tret } i \text { and } k\end{array}\right.$
We say the model is balanced when

$$
J_{1}=J_{2}=\cdots=J_{I}=J
$$

Our discussion will focus on the balanced -way ANONA model. The unbalanced model is similar but requires careful notation.

Analysis of Variance:

$$
\begin{aligned}
& \sum_{i=1}^{I} \sum_{j=1}^{J}\left(Y_{i j}-\bar{Y}_{1 .}\right)^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J}\left(Y_{i j}-\bar{Y}_{i} .\right)^{2}+J \sum_{i=1}^{I}\left(\overline{Y_{i}} .-\overline{Y_{. .}}\right)^{2} \text { proof } \\
& S S_{\text {Tot }}^{Y}=S S_{\text {Tot }}+S S_{\text {Err }} \quad \bar{Y}_{i .}=\frac{1}{J} \sum_{j=1}^{J} Y_{i j} \\
& =S S_{w}+S S_{B} \\
& \bar{Y}=\frac{1}{I J} \sum_{i=1}^{T} \sum_{j=1}^{J} y_{i j}
\end{aligned}
$$

win trot levers $\zeta_{\text {between/among tit levels }}$
And we estimate $\operatorname{Var}\left(\varepsilon_{i j}\right)=\sigma^{2}$ w/ S_{p}^{2} where:

$$
s_{p}^{2}=\frac{s S_{w}}{I(J-1)}
$$

or equivalently,

$$
\begin{aligned}
& \text { alently, } \\
& S_{p}^{2}=\frac{1}{I} \sum_{i=1}^{I} s_{i}^{2} \text { where } s_{i}^{2}=\underset{\substack{\text { variance of of } \\
i \\
\text { th group }}}{\text { sample }} \text {. }
\end{aligned}
$$

(Balanced) ANOVA Table:

Goral F-test:

$$
H_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{I}=0
$$

$H_{1}:$ At least one α_{i} is not equal to zero.

Test statistic: $F=\frac{M S_{B}}{M S_{w}}=\frac{S S_{B} /(I-1)}{S S_{w} /(I(J-1))} \stackrel{H_{0}}{\sim} F_{(I-1, I(5-1))}$
Rejection Region: if H_{0} is true then $\frac{S S_{B}}{I-1} \approx \frac{S S_{w}}{I(S-1)}$
If Ho is false then $\frac{S_{B}}{I-1}>\frac{S S_{\omega}}{I(J-1)}$
so $\quad A_{\alpha}=\left\{y_{i j}: \frac{S S_{B / I-1}}{S S_{\omega / I(J-1)}}>f_{(1-\alpha ; I-1, I(J-1))}^{*}\right\}$
Theorem:

$$
\text { If } y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \stackrel{m}{\sim} N\left(0, \sigma^{2}\right), \sum_{i=1}^{ \pm} \alpha_{i}=0
$$

then

$$
\begin{aligned}
& E\left(S S_{W}\right)=I(J-1) \sigma^{2} \\
& E\left(S S_{B}\right)=J \cdot \sum_{i=1}^{I} \alpha_{i}^{2}+(I-1) \sigma^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proof } \\
& \cdot E\left(S S_{w}\right)=E\left[\sum_{i=1}^{I} \sum_{j=1}^{J}\left(Y_{i j}-\bar{Y}_{i .}\right)^{2}\right]=\sum_{i=1}^{I} \sum_{j=1}^{J} E\left(Y_{i j}-\bar{Y}_{i} .\right)^{2}=(x)=I(J-1) \sigma^{2} \\
& \cdot E\left(S S_{B}\right)=E\left[J \sum_{i=1}^{I}\left(\bar{Y}_{i}-\bar{Y}_{.0}\right)^{2}\right]=J \sum_{i=1}^{I} E\left(Y_{i i}-\bar{Y}_{.0}\right)^{2} \\
&=\ldots(*) \\
&=J \sum_{i=1}^{I} \alpha_{i}^{2}+(I-1) \sigma^{2}
\end{aligned}
$$

where $(*)$ is established by lemma A pg. 480

Theorem:
If $Y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j}, \quad \varepsilon_{i j} \stackrel{\infty}{\sim} N\left(0, \sigma^{2}\right), \sum_{i=1}^{I} \alpha_{i}=0$ then $\quad \frac{S S_{W}}{\sigma^{2}} \sim X_{(I(J-1))}^{2}$.

Furthermore, if $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{I}=0$
then $\frac{S S_{B}}{\sigma^{2}} \sim \chi_{(I-1)}^{2}$ and $\frac{S S_{B}}{\sigma^{2}} \Perp \frac{S S_{W}}{\sigma^{2}}$.
Proof
Part 1:

$$
\text { *Relevant: HL 4, ch. } 6
$$

Since $\left[\begin{array}{ll}\frac{(n-1) s^{2}}{\sigma^{2}} \sim \mathcal{X}^{2} & \text { for } \quad s^{2}=\frac{1}{n-1)} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\ \text { where } \quad x_{1}, \ldots, x_{n} \approx N\left(\mu, \sigma^{2}\right)\end{array}\right]$
we have that

$$
\frac{1}{\sigma^{2}} \sum_{j=1}^{J}\left(Y_{i j}-\bar{Y}_{i .}\right)^{2} \sim X_{(J-1)}^{2} \sim \operatorname{Gamma}\left(\frac{J-1}{2}, \frac{1}{2}\right)
$$

If $W=\frac{1}{\sigma^{2}} \chi_{(J-1)}^{2}$ then $W \sim \operatorname{Gamana}\left(\frac{J-1}{2}, \frac{\sigma^{2}}{2}\right)$ and $\sum_{i=1}^{I} W_{i} \sim \operatorname{Gamma}\left(I \cdot \frac{J-1}{2}, \frac{\sigma^{2}}{2}\right)$ for Tit W_{i}. Hence $\frac{S S_{w}}{\sigma^{2}}=\frac{\sum_{i=1}^{I}\left[\sum_{j=1}^{J}\left(y_{i j}-\bar{y}_{i \cdot}\right)^{2}\right] \sim \chi^{2}(I(J-1)) \text {. }}{\sigma^{2}}$

Part 2:
Note that

$$
\begin{aligned}
\operatorname{Var}\left(\overline{Y_{i}}\right) & =\operatorname{Var}\left(\frac{1}{J} \sum_{j=1}^{J} Y_{i j}\right) \\
& =\left(\frac{1}{J}\right)^{2} \sum_{j=1}^{J} \operatorname{Var}\left(Y_{i j}\right)_{\text {since }} Y_{i j} \text { andes } \\
& =\frac{1}{J} \operatorname{Var}\left(Y_{11}\right) \text { since } Y_{i j} \text { are } \\
& =\frac{1}{J} \operatorname{Var}\left(\mu+\alpha_{1}+\varepsilon_{1}\right) \text { identically distbted } \\
& =\frac{1}{J} \operatorname{Var}\left(\varepsilon_{1}\right) \\
& =\frac{\sigma^{2}}{J} .
\end{aligned}
$$

Using the same fact as in Part 1, if $\alpha_{1}=\ldots=\alpha_{I}=0$ then $y_{i j} \stackrel{I D}{\sim} N\left(\mu, \sigma^{2}\right)$ and we have that

$$
\frac{\sum_{i=1}^{I}\left(\bar{Y}_{i \cdot}-\bar{Y}_{00}\right)^{2}}{\sigma^{2} / J} \sim \chi^{2}(I-1)
$$

Hence, $\quad \frac{S S_{B}}{\sigma^{2}}=\frac{J \sum_{i=1}^{I}\left(\bar{Y}_{i}-\bar{Y}_{. .}\right)^{2}}{\sigma^{2}} \sim X_{(I-1)}^{2}$.

Part 3
It suffices to show that data vectors

$$
\left[\left(Y_{1 j}-\bar{Y}_{1}\right),\left(Y_{2 j}-\bar{Y}_{2}\right), \ldots,\left(Y_{I_{j}}-\bar{Y}_{I_{0}}\right)\right]
$$

and

$$
\left[\bar{Y}_{1 .}, \bar{Y}_{2 .}, \ldots, \bar{Y}_{I} .\right]
$$

are independent for each $j=1, \ldots, J$.
For any $i_{1} \neq i_{2}, Y_{i j}-\bar{Y}_{i_{1}} . \Perp \bar{Y}_{i_{2}}$. since these are functions of different, independent error terms, $\Sigma_{i j}$.
Recall, for $X_{1}, \ldots, X_{n} N\left(\mu, \sigma^{2}\right)$, we have that $\bar{X} \mathbb{1}\left[\left(x_{1}-\bar{x}\right),\left(x_{2}-\bar{x}\right), \ldots,\left(x_{n}-\bar{X}\right)\right]$. Hence each \bar{Y}_{i}. is independent of $\left[\left(Y_{1 j}-\bar{Y}_{10}\right),\left(Y_{2 j}-\bar{Y}_{2}\right), \ldots,\left(Y_{I_{j}}-\bar{Y}_{I}.\right)\right]$ and the result holds.
(*) Ch. 6 TheA

Multiple Comparisons
If we reject $H_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{I}=0$, we still do not know

- how many treatment effects are nan-zero
- which treatment effects are non-zero

One idea is to use the 2 -sample t-test (or confidence interval) to test each

$$
H_{0}: \alpha_{i}-\alpha_{k}=0 \text { for all } i \neq k \in\{1,2, \ldots, I\}
$$

however, if we proceed whout making any adjustments, the mare tests we run on the same data set inflates the probability of a Type I error.

Some of the earliest adjustments for multiplicity include Tukey's method and the Banferrani correction. Although these methods vary greatly in terms of their usefulness and there are mare sophisticated ways to adjust fer multiple comparisons today, they are are relatively straightforward and provide a fandation for understanding modern methods of error control.

Tukey's Method for simultaneous (1- 1) 100% confidence intervals estimates each $\left(\alpha_{i}-\alpha_{x}\right)$ w/

$$
\left(\bar{Y}_{i} .-\bar{Y}_{k}\right) \pm[\underbrace{q_{I, I(J-1)}(\alpha)}_{T} \times \frac{s_{p}}{\sqrt{J}}]
$$

This is an $d^{\text {th }}$ quartile of the "studentized range" distbin

Bonferroni Adjustment for simultaneas (1-a) 100% confidence interval estimates each $\left(\alpha_{i}-\alpha_{k}\right) \omega /$

$$
\left(\bar{y}_{i} .-\bar{y}_{k} .\right) \pm\left[t_{I(J-1)}^{*}\left(\frac{\alpha}{m}\right) \times \frac{s_{p}}{\sqrt{J}}\right] \text { where } m=\left(\frac{I}{2}\right)
$$

Generalized LHR: I sump T-test II-9-22
Ex) Suppose $X_{1}, \ldots, X_{n} \stackrel{\#}{\#} N\left(\mu, \sigma^{2}\right)$ where μ, σ^{2} both unknown
Show that the generalized IAR test of $H_{0}: \mu=\mu_{0}$ us. Hi: $\mu \neq \mu_{0}$ is the same as the are-sample t-test

Likelihood: $\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sigma} \cdot \exp \left\{\frac{-1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}\right\}$,
$L\left(\mu, \sigma^{2}\right)=$

$$
=\left(\frac{1}{12 \pi}\right)^{n} \cdot\left(\frac{1}{\sigma}\right)^{n} \cdot \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\}
$$

$$
\omega_{0}=\left\{\mu_{0}\right\} \cup(0, \infty) \quad \Omega=(-\infty, \infty) \cup(0, \infty)
$$

Find the MLEs:

$$
\begin{aligned}
l\left(\mu, \sigma^{2}\right) & =\ln \left(\left(\frac{1}{\sqrt{2 \pi}}\right)^{n}\right)+n \ln (1 / \sigma)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \\
& =n \ln (1 / \sqrt{2 \pi})+n(\ln (1)-\ln (\sigma))-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \\
& =n \ln (1 / \sqrt{2 \pi})-n \ln (\sigma)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial \mu} l(\mu, \sigma)=-\frac{1}{\partial \sigma^{2}} \sum_{i=1}^{n} 2\left(x_{i}-\mu\right)--1=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right) \\
& \stackrel{\text { set }}{=} 0
\end{aligned}
$$

solve for $\hat{\mu}: \sum_{i=1}^{n}\left(x_{i}-\mu\right)=0$

$$
\Rightarrow \sum x_{i}-n \mu=0 \Rightarrow \hat{\mu}_{M C E}=\bar{x}
$$

$$
\begin{aligned}
\frac{\partial}{\partial \sigma} l(\mu, \sigma) & =\frac{-n}{\sigma}-\frac{1}{2}\left(-2 \sigma^{-3}\right) \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \\
& =\frac{-n}{\sigma}+\frac{1}{\sigma^{3}} \sum\left(x_{i}-\mu\right)^{2} \stackrel{\text { set }}{=} 0
\end{aligned}
$$

solve for \hat{f}^{2}
(subbing in $\hat{\mu}$):

$$
\begin{aligned}
\sum\left(x_{i}-\tilde{\mu}_{m \in}\right)^{2} & =\frac{n}{\sigma} \sigma^{3} \\
\Rightarrow \hat{\sigma}_{m L E}^{2} & =\frac{1}{n} \sum\left(x_{i}-\tilde{\mu}_{m L E}\right)^{2} \\
& =\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}
\end{aligned}
$$

So now we can evaluate the LHR test statistic.

So the rejection region is

$$
\begin{aligned}
& \text { the rejection region is } \\
& A_{\alpha}=\left\{\underline{x}: \exp \left\{\frac{-1}{2} \cdot \frac{1}{n \sum \sum\left(x_{i}-\bar{x}\right)^{2}}\left[\sum\left(x_{i}-\mu_{0}\right)^{2}-\Sigma\left(x_{i}-\bar{x}\right)^{2}\right]\right\}<C_{\alpha}\right\}
\end{aligned}
$$

where C_{α} solves

$$
\begin{aligned}
& \alpha=\operatorname{Pr}\left(\left.\exp \left\{\frac{-1}{2} \cdot \frac{1}{\sqrt{r} \sum\left(x_{i}-\bar{x}\right)^{2}}\left[\sum\left(x_{i}-\mu_{0}\right)^{2}-\Sigma\left(x_{i}-\bar{x}\right)^{2}\right]\right]<C_{\alpha} \right\rvert\, H_{0}\right) \\
& =\operatorname{Pr}\left(\left.\frac{-1}{2} \cdot \frac{1}{\sqrt{\frac{1}{\sum} \sum\left(x_{i}-\bar{x}\right)^{2}}}\left[\sum\left(x_{i}-\mu_{0}\right)^{2}-\sum\left(x_{i}-\bar{x}\right)^{2}\right]<C_{\alpha}^{\prime} \right\rvert\, H_{0}\right) \\
& =\operatorname{Pr}\left(\left.\frac{\left[\sum\left(x_{i}-\mu_{0}\right)^{2}-\Sigma\left(x_{i}-\bar{x}\right)^{2}\right]}{\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}}>C_{\alpha}^{\prime \prime} \right\rvert\, H_{0}\right) \\
& =\operatorname{Pr}\left(\left.n\left[\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}-1\right]>C^{\prime}{ }_{\alpha} \right\rvert\, H_{0}\right) \\
& \left.=P_{r}\left(n \frac{\sum\left(x_{i}-\bar{x}\right)\left(\bar{x}-\mu_{0}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}>c_{\alpha}^{\prime \prime}\right) H_{0}\right) \\
& \text { carol wine the sum!. } \\
& =\operatorname{Pr}_{(}\left(\left.n \frac{\sum\left[\left(x_{i}-\bar{x}\right)^{2}+2\left(x_{i}-\bar{x}\right)\left(\bar{x}-\mu_{0}\right)+\left(\bar{x}-\mu_{0}\right)^{2}\right]}{\sum\left(x_{i}-\bar{x}\right)^{2}} \right\rvert\, H_{0}\right) \\
& =\operatorname{Pr}\left(\left.n\left[1+\frac{0}{\sum\left(x_{i}-\bar{x}\right)^{2}}+\frac{n\left(\bar{x}-\mu_{0}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}\right]>C_{\alpha}^{\prime \prime} \right\rvert\, H_{0}\right)
\end{aligned}
$$

Thus far we have
make sure

$$
\begin{aligned}
& \text { make surertand } \\
& \text { you was }
\end{aligned}
$$

$$
\begin{aligned}
& \text { this } \\
& \text { part }
\end{aligned}
$$

This is the teststatistic
Note:

$$
\operatorname{SE}(\bar{x})=\sqrt{\frac{\sum\left(x_{1}-x\right)^{2}}{n}}
$$

Thus $C_{\alpha}^{\mu+\prime \prime \prime}=t_{(1-\alpha / 2, n-1)}^{*}$ and were done!.

$$
\begin{aligned}
& \alpha=\operatorname{Pr}\left(\left.\frac{n^{2}\left(\bar{x}-\mu_{0}\right)^{2}}{\sum\left(x_{i}-\bar{x}\right)^{2}}>c_{d}^{\prime \prime \prime} \right\rvert\, H_{0}\right) \\
& =\operatorname{Pr}\left(\left.\frac{\left(\bar{x}-\mu_{0}\right)^{2}}{\bar{\Sigma}\left(x_{i}-\bar{x}\right)^{2}}>C_{\alpha}^{\prime \prime \prime \prime} \right\rvert\, H_{0}\right) \\
& =\operatorname{Pr}\left(\left.\left|\frac{\bar{x}-\mu_{0}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}\right|>C_{\alpha}^{\text {nat } 1} \right\rvert\, H_{0}\right) \\
& =\operatorname{Pr}\left(\sqrt{n}\left|\frac{\bar{x}-\mu_{0}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}\right|>C_{\alpha}^{+\ldots+1 \prime} / H_{0}\right)
\end{aligned}
$$

Generalized $C H R$: ANOUA overall F-test

Ex) (from HW (8)
Suppose $\quad Y_{i j}=\mu+\alpha_{i}+\Sigma_{i j}$ where and $\varepsilon_{i j} \xrightarrow{\pi} N\left(0, \sigma^{2}\right)$

For $i=1, \ldots$, I and $j=1, \ldots, J$.
Show that the generalized $\angle H R$ test of
$H_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{1}=0$ vs. $H_{1}:$ Not tho is the same as the ANOVA overall E-test.

Find the likelihood:

$$
\begin{aligned}
& L\left(\mu, \alpha_{1}, \ldots, \alpha_{I}, \sigma^{2}\right)= \prod_{i=1}^{I} \frac{J}{\prod_{j=1}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{\frac{-1}{2 \sigma^{2}}\left(y_{i j}-\left(\mu+\alpha_{i}\right)\right)^{2}\right\} \\
&=\left(\frac{1}{\sqrt{2 \pi})^{I J}\left(\frac{1}{\sigma}\right)^{T J} \exp \left[-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{I} \sum_{j=1}^{J}\left(y_{i j}-\left(\mu+\alpha_{i}\right)\right)^{2}\right\}}\right. \\
& I \text { of these } \\
& \Omega=(-\infty, \infty) \cup \overbrace{(-\infty, \infty) \cup \cdots(-\infty, \infty)} \cup(0, \infty) \\
& \omega_{0}=(-\infty, \infty) \cup[0] \cup \ldots \cup[0\}(0, \infty)
\end{aligned}
$$

Find the MLE's:

$$
\begin{aligned}
& \hat{\mu}_{m \varepsilon}=\bar{y}_{-} ; \hat{\alpha}_{i \mu l s}=\bar{y}_{i \cdot} ; \quad \hat{\sigma}_{m=}^{2}=\frac{1}{I J} \sum_{i=1}^{I} \sum_{j=1}^{J}\left(y_{i j}-\bar{Y}_{i \cdot}\right)^{2} \\
& \text { Note : } \bar{y}_{\cdot 0}=\frac{1}{I J} \sum_{i j} \sum_{y_{i j}} ; \bar{y}_{i 0}=\frac{1}{J} \sum_{j=1}^{n} y_{i j}
\end{aligned}
$$

Find the LHR test statistic:

$$
\begin{aligned}
& \Lambda^{*}=\frac{L\left(\hat{\mu}_{M E}, \alpha_{1}=\ldots=\alpha_{I}=0, \hat{\gamma}_{m E}^{2}\right)}{L\left(\hat{\mu}_{M E}, \hat{\alpha}_{1}, \hat{\alpha}_{2}, \ldots, \tilde{y}_{I}, \hat{\gamma}_{\text {ME }}^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\exp \left\{\frac{-1}{2}\left[\frac{\sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{. j}\right)^{2}-\sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{. .}-\bar{y}_{i \cdot}\right)^{2}}{I J \sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{i \cdot}\right)^{2}}\right]\right\}
\end{aligned}
$$

Find the rejection region:

$$
A_{\alpha}=\left\{y: \exp \left[\frac{-1}{2}\left[\frac{\sum_{i=1} \sum_{j}\left(y_{i j}-\bar{y}_{. j}\right)^{2}-\sum_{i} \sum_{j}\left(y_{j j}-\bar{y}_{.0}-\bar{y}_{i \cdot}\right)^{2}}{I J \sum_{i j}\left(y_{j}-y_{i \cdot}\right)^{2}}\right]\right\}<c_{\alpha}\right\}
$$

where c_{2}^{\prime} solves

Now lets find equivalent probability statements until we recognize the distribution of the function of the data!

$$
\begin{aligned}
& \stackrel{\vdots}{=} P_{\sigma}\left(\left.\frac{\sum \sum\left(\left(y_{i j}-\overline{y_{2}} \cdot\right)^{2}-\left(y_{i j}-\overline{y_{y}} \cdot-\overline{\left.\left.y_{i} \cdot\right)^{2}\right)}\right.\right.}{\frac{1}{\sqrt{5}} \sum_{i} \sum_{j}\left(y_{j j}-\bar{y}_{i} \cdot\right)^{2}}>c_{\alpha}^{\prime} \right\rvert\, H_{0}\right) \\
& =P_{\sigma}\left(\left.\frac{\sum \sum\left[\left(y_{i j}-\bar{y}_{. .}\right)^{2}-\left(y_{i j}-\bar{y}_{. .}-\bar{y}_{i \cdot}\right)^{2}\right]}{\sum \sum\left(y_{i j}-\bar{y}_{i-}\right)^{2}}>c_{\alpha}^{\prime \prime} \right\rvert\, H_{0}\right) \\
& \left.=\operatorname{Pr}\left(\frac{\sum \sum\left[\left(y_{i j}-\overline{y_{i}}+\bar{y}_{i \cdot}-\bar{y}_{.0}\right)^{2}-\left(y_{i j}-\bar{y}_{i-}-\overline{y_{.0}}\right)^{2}\right]}{\sum \sum\left(y_{i j}-\bar{y}_{i \cdot}\right)^{2}}>C_{d}^{\prime \prime}\right) H_{0}\right)
\end{aligned}
$$

let's take a carefal look at the numeratar:

$$
\begin{aligned}
& \sum \sum\left[\left(y_{i j}-\bar{y}_{i \cdot}+\bar{y}_{i .}-\bar{y}_{.0}\right)^{2}-\left(y_{i j}-\bar{y}_{i-}-\bar{y}_{. .}\right)^{2}\right] \\
& =\sum \sum\left(y_{i j}-\bar{y}_{i j}\right)^{2}+2\left(y_{i j}-\bar{y}_{i j}\right)\left(\bar{y}_{i}-\bar{y}_{j_{0}}\right)+\left(\bar{y}_{i}-\bar{y}_{i}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\Sigma \Sigma\left[\left(y_{j_{i}}-\bar{y}_{i}\right)^{2}+2\left(\bar{y}_{i}-\bar{y}_{-i}\right)\left(y_{i j}-\bar{y}_{i}\right)+\left(\overline{y_{i}}-\overline{y_{.0}}\right)^{2}\right. \\
& \left.-\left(y_{i j}-\bar{y}_{i \cdot}\right)^{2}+2 \bar{y}_{.0}\left(y_{i j}-\bar{y}_{i \cdot}\right)-\bar{y}_{.0}^{2}\right] \\
& =\Sigma \Sigma\left[2\left(\bar{y}_{i}-\bar{y}_{.}\right)\left(y_{i_{j}}-\bar{y}_{i-}\right)+\left(\bar{y}_{i}-\bar{y}_{.0}\right)^{2}+2 \bar{y}_{-} \cdot y_{i j}-2 \bar{y}_{.} . \bar{y}_{i}-\bar{y}_{n}^{2}\right] \\
& =2 \sum_{i}\left[\left(\bar{y}_{i}-\bar{y}_{i}\right)_{j} \sum_{j}\left(y_{i j}-\bar{y}_{i}\right)\right]+\sum_{i} \sum_{j}\left(\bar{y}_{i-}-\bar{y}_{i n}\right)^{2} \\
& \left.+2 \bar{y}_{.} \cdot \sum_{i} \sum_{i j}-2 J \bar{y} . \sum_{i} \bar{y}_{i}\right)-I J \bar{y}_{. .}{ }^{2} \\
& \sum_{i} \frac{1}{S_{j}} \sum_{j} y_{j} \\
& =2 \sum_{i}\left[\left(\bar{y}_{i}-\bar{y}_{. .}\right) \sum_{j}\left(y_{i j}-\bar{y}_{i} .\right)\right]+\sum \sum\left(\bar{y}_{i}-\bar{y}_{.} .\right)^{2}-I J y_{. .}{ }^{2} \\
& =2 \sum_{i}\left[\left(y_{i}--\bar{y}_{.}\right)_{j} \sum\left(y_{i j}-\bar{y}_{i \cdot}\right)\right]-I \Sigma \bar{y}_{2}^{2}+\sum \sum\left(\bar{y}_{i-}-\bar{y}_{\cdot}\right)^{2} \\
& =2 \sum\left[\bar{y}_{i} \cdot \sum_{j}\left(y_{i}-\bar{y}_{i}\right)-\bar{y}_{\cdot} \cdot \sum_{j}\left(y_{j}-y_{i}\right)-\frac{J}{2} \bar{y}_{\cdot i}^{2}\right]+\sum \sum\left(\bar{y}_{i}-\overline{y_{i}} .\right)^{2} \\
& =2 \sum_{i}[\bar{y}_{i} \cdot(\underbrace{\left(\sum_{j} y_{i j}-\sum_{j} y_{i j}\right)}_{0}-\bar{y}_{\cdot .}(\underbrace{\sum_{j} y_{i j}-\sum_{j} y_{i j}}_{0})-\frac{J}{2} \bar{y}_{\cdot i}^{2}]+\sum_{j} \sum_{j}\left(\bar{y}_{i}-\bar{y}_{. j} .\right)^{2} \\
& =I J \bar{y}_{.0}{ }^{2}+\sum_{i} \sum_{j}\left(\bar{y}_{i}-\overline{y_{.}}\right)^{2}
\end{aligned}
$$

Putling this altagether:

$$
\begin{aligned}
\alpha & =\operatorname{Pr}\left(\left.\frac{I J \bar{y}_{.0}^{2}+\sum_{i} \sum_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}}{\sum \sum\left(y_{i j}-\bar{y}_{i \cdot}\right)^{2}}>C_{\alpha}^{\prime \prime} \right\rvert\, H_{0}\right) \\
& =\operatorname{Pr}\left(\left.\frac{I J \bar{y}_{.0}^{2}+J \sum_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2}}{\sum \sum\left(y_{i j}-\bar{y}_{i .}\right)^{2}}>C_{\alpha}^{\prime \prime} \right\rvert\, H_{0}\right)
\end{aligned}
$$

Pleose eheck my work I. 3

$$
=P_{6}\left(\frac{J I(J-1)}{I-1}\left[\sum_{i=1}^{I}\left(\bar{y}_{i}--\bar{y}_{. .)^{2}}^{2} / \sum_{i=1}^{I} \sum_{j=1}^{J}\left(y_{i=1}-\bar{y}_{i-}\right)^{2}\right]>K_{\alpha} \mid H_{0}\right)\right.
$$

which is the regectian rule for the F-test!.

Choice/Decision:

Stakeholder	Potential results	
	Harm	Benefit
You		

- Example harms: cost of money, time, effort; negative impact to reputations; can be tangible or intangible with immediate or delayed effects
- Example benefits: earning or gaining money; removal of a harm; saved time or effort; improved reputation; demonstration of expertise.

Source: Tractenberg, R. E. (2019). Teaching and Learning about ethical practice: The case analysis.

Recap - Ore-Way ANOVA
(balanced) $\quad Y_{i j}=\mu+\alpha_{i}+\Sigma_{i j} ; \quad \begin{aligned} & i=1, \ldots, I \\ & j=1, \ldots, J\end{aligned} \Rightarrow n=I J$
where we assume

1) $\Sigma_{i j} \sim$ Normal
2) $\operatorname{Var}\left(\varepsilon_{i j}\right)=\sigma^{2}$ is an unknown constant
3) Each $\Sigma_{i j}$ is independent of the others

Overall-F test for treatment effects 三 Generalized $\angle H R$ test where $\quad a_{n} H_{0}: \alpha_{1}=\alpha_{2}=\ldots=\alpha_{5}=0$

$$
\text { and } H_{1}: \text { At least one } \alpha_{j} \neq 0 \text { for } j=1, \cdots, J
$$

Multiple Campurisons:
Necessary if you want to control the overall Type I error rate when conducting many tests Cor finding many (ISs) on the same set of data.

- Tukey's method (AKA Tukey's honest significance difference)
- Raferroni's method

Non-parametric version of one-way ANOUA F-test: Kruskal-Wallis test

Topic: 2-way ANOUA Models
Setting a Notation:

where
K is the number of observations per combination
Model: of factor levels

$$
y_{i j k}=\mu+\alpha_{i}+\beta_{i j}+\delta_{i j}+\varepsilon_{i j k}
$$

where $\sum_{i=1}^{I} \alpha_{i}=0, \sum_{j=1}^{J} \beta_{j}=0, \sum_{i=1}^{I} \delta_{j}=\sum_{j=1}^{J} \delta_{i j}=0$
and $\varepsilon_{i j k} \stackrel{I D}{\sim} N\left(0, \sigma^{2}\right)$

Thus: $E\left(Y_{i j k}\right)=\mu+\alpha_{i}+\beta_{j}+\delta_{i j}$

$$
\operatorname{Var}\left(Y_{i j k}\right)=\sigma^{2}
$$

Analysis of Variance: $\quad S S_{\text {Tot }}=S S_{A}+S S_{B}+S S_{A B}+S S_{E}$

$$
\begin{array}{ll}
S S_{\text {Tot }}=\sum_{i} \sum_{j} \sum_{k}\left(y_{i j k}-\bar{y}_{\ldots} .\right)^{2} & S S_{A}=\operatorname{JK} \sum_{i}\left(\bar{y}_{i . .}-\bar{y}_{\ldots .}\right)^{2} \\
S S_{E}=\sum_{i} \sum_{j} \sum_{k}\left(Y_{i j k}-\bar{y}_{i j .}\right)^{2} & S S_{B}=\operatorname{IK} \sum_{j}\left(\bar{y}_{\cdot j}-\bar{y}_{\ldots} . .\right)^{2} \\
& \left.S S_{A B}=K \sum_{i} \sum_{j}\left(\bar{y}_{i j .}-\bar{y}_{i . .}-\bar{y}_{. j}+\bar{y}_{\ldots}\right)^{2}\right)^{2}
\end{array}
$$

And we estimate $\operatorname{Var}\left(\varepsilon_{i j}\right)=\sigma^{2}$ w/ SSE bc:

$$
E\left(S S_{E}\right)=I J(k-1) \sigma^{2}
$$

If $\varepsilon_{i j k}$ are indep. w/ $E\left(\varepsilon_{i j k}\right)=0$ and $\operatorname{Var}\left(\varepsilon_{i j k}\right)=\sigma^{2}$.

$$
\left[\begin{array}{l}
\text { Proof see Chm A } \\
\text { of } \mathrm{Ch} .12 .3, \mathrm{pg} .494
\end{array}\right]
$$

Q) What is the likelihood?

$$
\begin{aligned}
\operatorname{VK}\left(\mu, \alpha, \beta, \beta_{i}, \sigma_{2}, \sigma^{2}\right) & = \\
& \prod_{i=1}^{I} \prod_{j=1}^{J} \prod_{k=1}^{K}\left(\frac{1}{2 \pi \sigma}\right) \operatorname{erp}\left\{\frac{-1}{2 \sigma^{2}}\left(y_{i j}-\left[\mu+\alpha_{i}+\beta_{j}+\delta_{i j}\right]\right)^{2}\right\}
\end{aligned}
$$

Maximum Likelihood Estimates

$$
\begin{aligned}
& \hat{\mu}_{m I E}=\bar{Y}_{\ldots} \\
& \hat{\alpha}_{i}=\bar{Y}_{i . .}-\bar{Y}_{\ldots}, \quad, i=1, \ldots I \\
& \hat{\beta}_{j}=\bar{Y}_{. j \cdot}-\bar{Y}_{\ldots} \ldots=1, \ldots, J \\
& \hat{\delta}_{i j}=\bar{Y}_{1 j .}-\bar{Y}_{i . .}-\bar{Y}_{i j}+\bar{Y}_{\ldots} .
\end{aligned}
$$

2-Way ANOVA Table

Theorem: Model tests for 2-way, balancedANOVA

$$
\text { If } \quad y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\delta_{i j}+\varepsilon_{i j k}
$$

where $\sum_{i=1}^{I} \alpha_{i}=0, \sum_{j=1}^{J} \beta_{i}=0, \sum_{i=1}^{J} \delta_{j}=\sum_{j=1}^{J} \delta_{i j}=0$
and $\varepsilon_{i j k} \stackrel{\text { P }}{\sim} N\left(0, \sigma^{2}\right)$
(1) then $\frac{S S_{E}}{\sigma^{2}} \sim X_{(I J(k-1))}^{2}$ and $S S_{E} \notin S S_{A} \notin S S_{B} \Perp S S_{A B}$
(2) and if $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{I}=0$ then

$$
\frac{S S_{A}}{\sigma^{2}} \sim \chi_{(I-1)}^{2}
$$

(3) and if $\beta_{1}=\beta_{2}=\cdots=\beta_{J}=0$ then

$$
\frac{S S_{B}}{\sigma^{2}} \sim X_{(J-1)}^{2}
$$

(1) and if $\delta_{11}=\delta_{12}=\ldots=\delta_{15}=\delta_{21}=\ldots=\delta_{25}=\ldots \delta_{I J}=0$
then

$$
\frac{S S_{A B}}{\sigma^{2}} \sim \mathcal{X}^{2}((I-1)(J-1))
$$

Additive Factor Effects
Every mean response for any $i=1, \ldots, I$ and $j=1, \ldots, J$ can be obtained by adding (ar subtracting) the levels' main effects (say, α_{I} and β_{J}) to the grand mean.
The relationship the $1^{\text {st }}$ factor has w/ the response varro is independent of the relationship the $2^{n d}$ factor has wo the response.
le. The "effect") of either factor does not depend on the level of the other factor.
Interacting (multiplicative) Factor Effects
There is a differential influence of one factor that depends on the levels of the other factor. Some ways to assess the appropriateness of an interaction model incluele:

- Compare the mean difference for any two levels of the $1^{\text {st }}$ factor to see if this is roughly the same for all levels of the $2^{\text {nd }}$ factor (or vice versa)
- plot the treatment means for different factor levels to determine if the "curves" are roughly parallel.
Q) Derive a test statistic o rejection rule to test each of the following:
(a) Are the averages of the response significantly different according to the levels of the mainfactar?
(b) Are the averages of the response significantly different according to the possible combinations of the main factor levels s the secondary factor levels?

The idea behind these tests is to consider a test statistic that is a ratio of one mean square term divided by the mean square error term.

If this ratio is much larger than 1 then this indicates the presence of a signal (re. factor "effect") that is discernable from the noise (ie. the unexplained variability due to error).

Ex) Come up wi research questions aba rt these penguins that can be answered $\omega /$:

Il a paired t-test
Il a two sample (independent) t-test
Il a cne-way ANOVA F-test
Il a two-way ANOVA (partial) F-test - interaction us additive models?
Q) Consider a hypothetical arguement:
"A treatment is a treatment, whether the study involves a single factor or multiple factors. The number of factors has little effect on the interpretation of the results (of an ANOVA model)."
Evaluate this arguement and form a respanse."
I-Way

2-Way

$$
\begin{aligned}
& y_{i j}=\mu+\alpha_{i}+\varepsilon_{i j} \\
& y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j k} \\
& y_{i j k}=\mu+\alpha_{i}+\beta_{j}+\delta_{i j}+\varepsilon_{i j k}
\end{aligned}\left\{\begin{array}{l}
i=1, \ldots, I \\
j=1, \ldots, J \\
k=1, \ldots, k
\end{array}\right.
$$

Topic: Comparing Count Data /(ch.13)
In situations where our data does not represent a measurement of a numeric variable, but rather represents counts of distinct qualitative features, the previous methods we've discussed are no longer relevant.
We will now shift our attention to a couple of error controlled statistical tests to aid in the analysis of categorical data.

Ex) In the penguin data, consider a setting in which the only data we have are
$\left\{\begin{array}{l}\text { - the island for each observational unit. } \\ \text { - the species }\end{array}\right.$
Method 1: Fisher's exact test
is exact because the testing theory does not rely on any assumptions of $n \rightarrow \infty$.

The test statistic follows a hypergeometric distb'n under the assumption of tho.

Method 2: Chi-Square.test of homogeneity
method 3: Chi-Square test of independence

These methods require a large sample size ctypically that each "cell" count is $\geqslant 5$) bile the testing theory relies upon the assumption that $n \rightarrow \infty$.
In each method, the test statistic asymptotically follows a Chi-Square distbin under the assumption of Ho.

Note: There are many modern exact methods under development that are mode possible by the computational power available today.

Ex)
Suppose we are studying the palmer penguins data but the only info we have for each penguin is their island of residence, their species, t their sex.

Some Terminology:
odds - prob. of success t failure far a given (fixed) row Ex) odds a penguin is $=\frac{\operatorname{Pr}(\text { penguin is } F)}{\operatorname{Pr}(\text { penguin is } \mu)}$

- odds $=1 \Leftrightarrow$ success ∞ failure are equally likely
- odds $21 \Leftrightarrow$ success bess likely than failure

Odds ratio - a ratio of related odds
Ex) $\frac{\text { obs a Biscoe Island Penguin is } F}{\text { odds a Dream Island Penguin is } F}$

Fishers Exact Test

Note: Far $2<2$ tables $H_{0}: \theta=1$ is equivalent to testing the independence of the row 6 col variables.

Note: P-valuer from exact tests can be casenative (ie. measured larger than they really are).

A ssumptions

- Row totals and column totals are fixed by design
- At least 3 cells have expected counts <5 but no expected cell cant is <1.

Ex) Lady tasting tea experiment
8 cups of tea poured so presented in randan order 4 had milk poured fins, 4 had tea pared first

Lady says poured first

H_{0} : The lady has no discerning ability (independence)
le. $\quad N_{11} \sim$ Hypergeometric

Note: If data are not a random sample t no random assignment is performed, then the question is not necessarily appropriate for (frequentist) probabilistic inference.

Chi-Squave Test of Independence
Contingency Table w) $\left\{\begin{array}{l}I \text { rows it } n=\text { total sample size } \\ J \text { columns }\end{array}\right.$
Ix J Contingency Table of Cell cants:
Factor w/ J levels

Factor $4 /$ I levels

	factor					
1	1	2	3	\ldots	J	
2	n_{11}	n_{12}	n_{13}	\cdots	$n_{1 J}$	n_{11}
3	n_{31}		\ddots			
\vdots	\vdots					
I	$n_{I 1}$	$n_{I 2}$	$n_{I 3}$	\cdots	$n_{I J}$	
	$n_{.1}$	$n_{.2}$				n

statistical inference considers the joint distribution of the cell counts $n_{i j}$, for $i=1, \ldots, I$ and $j=1, \ldots, J$

I $\times J$ contingency table of probabilities:
Factor w/ J levels

Factor 4 I levels

Marginal probabilities

$$
\begin{aligned}
& i^{\text {th }} \text { row: } \pi_{i}=\sum_{j=1}^{J} \pi_{i j} \\
& j^{\text {th }} \text { column: } \pi_{i j}=\sum_{i=1}^{T} \pi_{i j}
\end{aligned}
$$

H_{0} : The factor wi J levels is independent of the factor wi I levels
ie. $\quad \pi_{i j}=\pi_{i} . \pi_{i j}$ for every i, j
H_{A} : The factor wo J levels is not independent of the factor
If the row levels are independent of the column levels
then $n_{i j} \sim \operatorname{multivomial}\left(\pi_{i j}\right)$
Assumption: The row and column totals can vary (are not ${ }^{(7)}$ fixed by design) and the sample total n is large enough (expected cell cants all >5)

$$
\hat{\pi}_{i j_{j}^{m L E}} H_{0} \frac{n_{i-}}{n} \times \frac{n_{\cdot j}}{n}
$$

This is the MLE for $\pi_{i j}$ under the assumption that the J cols i I rows
Pearson's Chi $-S_{q}$. Test Statistic:

$$
\chi^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}}{\underset{n \rightarrow \infty}{H_{0}}}_{\chi_{((I-1)(J-1))}^{2}}
$$

Observed: $\quad O_{i j}=n_{i j}$
Expected: $\quad E_{i j}=n \cdot \hat{\pi}_{i j}^{m L E}=\frac{n_{i-} n_{i}}{n}$
Note: Independence of factor varbs can be understood as homogeneity of conditional distbins

Chi-Square Test for Homogeneity
Tests the homogeneity of a multinomial distlin
$J=$ the number of multinomial distributions we are testing for hownegeneity (\# of populates)
$I=$ the number of levels of the factor that follows a multinomial distb'n

Assumptions: Data consists of independent samples from a multinemial disth'n (le. either the column or row totals are fixed).
Sample is large enough (expected cell cants all >5).
Note: This is a special case of the Chi-Squered goodness of fit test.

$$
\begin{aligned}
& H_{0}: \pi_{i 1}=\pi_{i 2}=\ldots=\pi_{i J} \text {, for } i=1, \ldots, I \\
& \hat{\pi}_{j}^{m t e} \stackrel{H_{0}}{=} \frac{n_{i} .}{n_{\cdot 0}} \quad\left[\begin{array}{l}
\text { Prof } \\
\text { lagrancige multivier }
\end{array}\right]
\end{aligned}
$$

So for the $j^{\text {th }}$ muttincmial, the expected count in the $i^{\text {th }}$ category is

$$
E_{i j}=\frac{n_{\cdot j} n_{i_{0}}}{n_{\cdot .}}
$$

Pearson's Chi-Squered Test Statistic:

$$
X^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(O_{i j}-E_{i j}\right)^{2}}{E_{i j}} \overbrace{a s n \rightarrow \infty}^{H_{0}} \mathcal{Y}_{((I-1)(J-1))}^{2}
$$

Next class:
Chi-Eyuare Test for Goodness of Fit (h. 0.5) R-code
"Office has"
(*) Notes an Chi-Square sampling assumptions
The grand total, n, is fixed for any of these tests. what differs is whether or not row and/or column totals are also fixed, or allowed to vary.

Eg) You randomly select 100 individuals
>54 turn at to be registered Democrats
>46 turn at to be registered Republicans and survey these individuals on whether or not reproductive rights are a top issue this election year.
This is a Chi-Square test of independence suture the total individuals sampled is fixed but the number of each type of voter can vary.

Eg) In your county, 54\% of registered voters are registered Democrats and 46% are registered Republicans. You randomly select 54 registered Democrats and 46 registered Republicans and survey these individuals on whether or not reproductive rights are a top issue this election year.
This is a Chi-square test of homogeneity to determine if $\operatorname{Pr}($ repps rights $\mid D)=\operatorname{Pr}($ repro rights $\mid R)$. The marginal totals of registered Dems o Reps is fixed by design in addition to the grad total of Individuals being surveyed.

The asymptotic part relates to whether or not the entire grand total is increasing to infinity or the row (or column) totals are both increasing to infinity.

Chi-Squave test for Gaduess of Fit (h.9.5)
AKA: Likelihood ratio test (LHR) for the multinomial distb'n

A multinemial distbin is an extension of the binomial but here there are more than 2 possible outcomes wi associated probabilities. If

$$
\left(N_{1}, \ldots, N_{k}\right) \sim \text { Multinomial }\left(n_{1}, n_{2}, \ldots, n_{k} ; P_{1}, P_{2}, \ldots, P_{k}\right)
$$

where $\sum_{i=1}^{k} p_{i}=1$ are the probabilities associated wy each of the k outcomes, and $\sum_{i=1}^{k} n_{i}=n$ are the corresponding counts.
then $\quad \operatorname{Pr}\left(N_{i}=n_{i}\right)=\binom{n}{n_{i}} p_{i}^{n_{1}}\left(1-p_{i}\right)^{n-n_{i}}$ and jointly

$$
\begin{aligned}
& \text { jointly } \\
& \operatorname{Pr}\left(N_{1}=n_{1}, N_{2}=n_{2}, \ldots, N_{k}=n_{k}\right)=\binom{n}{n_{1}, \cdots n_{k}} p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}
\end{aligned}
$$

Note, a chi-Sq test of homogeneity is testing whether or not $p_{1}=p_{2}=\cdots=P_{k}$.

The Chi-Square goodness of fit test determines if the data support a particular value for each $p_{i}, i=1, \ldots, k$ probability.
le. $H_{0}=R=R(\theta)$ where $\theta \in \omega_{0} \leq \mathbb{R}^{k}$
The entire joint parameter space is

$$
\Omega=\left\{x_{i}: x_{i} \geqslant 0 \text { and } \sum_{i=1}^{k} x_{i}=1\right\} \subseteq \mathbb{R}^{k-1}
$$

By the invariance property of MLES, if $\hat{\theta}_{\text {ME }}$ is the MLE for θ restricted to ω_{0}, then $\underset{\sim}{P}\left(\hat{\theta}_{\text {MIL }}\right)=\left(p_{1}\left(\hat{\theta}_{\text {ME }}\right), P\left(\hat{\theta}_{\text {ME }}\right), \ldots, p_{k}\left(\hat{\theta}_{\text {LE }}\right)\right)$
is the MLE fer R under H_{0}.
un-restricted, the MLE for R over Ω is

$$
\hat{P}_{M E}=\left(\frac{n_{1}}{n}, \frac{n_{2}}{n}, \ldots, \frac{n_{k}}{n}\right) .
$$

The GLHR test statistic, Λ, is asymptotically equivalent to the Pearscris $C h_{1}-\Sigma_{q}$, test stat, X^{2} :

$$
\Lambda=\frac{\frac{n!}{n_{1}!n_{1}!\cdots n_{k}!p_{1}(\hat{\theta})^{n_{1}} \cdots p_{k}(\hat{\theta})^{n_{k}}}}{\frac{n!}{n!n_{2}!\cdots n_{k}!} \hat{n}_{1}^{n_{1}} \cdots \hat{p}_{k}^{n_{k}}} \stackrel{n \rightarrow \infty}{\approx} \sum_{i=1}^{k} \frac{\left.n_{i}\right)-n p_{i}(\hat{\theta})}{\left(\vec{n} p_{i}(\hat{\theta} \mid)\right.}=x^{2}
$$

as can be seen on pg. 342 of your textbook (using a Taylor series expansion).
R-code cheat sheet
Announcements t updates

- HeW 21
- Power o t-tests fer comparing means
- Categorical data quick review/highlights

Notes an comparing means: (fran blackbeard)
Comunar among all methods below is the assumption of constant, common variance.
CI's for the five difference in group means takes form:

$$
\bar{D} \pm\left[t^{*} \times S E(\bar{D})\right] \quad \text { margin of error }
$$

- Un pared t-test

$$
t_{(m+n-2 ; \% / 2)}^{*}, S E(\bar{D})=\hat{\sigma} \sqrt{\frac{1}{n}+\frac{1}{m}}, \hat{\sigma}=S_{\text {pool }}
$$

$>$ balanced $n=m$, total sample size is $2 n$
$>$ unbalanced (less powerful than balanced), total gamp size

- Parred t-test (implicitly balanced $m=n$)
total sample size is $2 n$
$>$ is mare powerful than balanced un-paired t-test only if the paired data are strongly linearly correlated.

$$
t^{*}(n-1, \alpha / 2), \operatorname{SE}(\bar{D})=\hat{\sigma} \sqrt{1 / n}, \hat{\sigma}=\frac{1}{n=1} \sum_{1}^{n}\left(b_{i}-\bar{\sigma}\right)^{2}\left(=s_{0}\right)
$$

Group Work - Simulation Studies to understand "chance" specifically, let's investigate what "random chance" can look like in the context of a $\mathrm{Chi}^{\text {-square }}$ procedure to test far homogeneity.

1) What is your true model that yon will use to generate many observed data from?
2) How many times will ye generate new data sets and how will you summarize these data?
3) Do you see lin any of your simulated data sets' patterns that look like they came from a nou-homegenas population model? How often does this happen?

Topic: Linear Least Squares (ch.14)

Setting:

The idea is to use a $(p-1)$-dimensional hyperplane to model a predictive relationship btw the p-1-predictars and the response.

This is a very powerful modeling technique that provides the foundations for more advanced extensions including

- multivariate response $Y_{1 i}, Y_{2 i}, \ldots ., Y_{m i}$
- binary respanse $Y_{i}=\left\{\begin{array}{l}0, \text { with prob } 1-p \\ 1, \text { with prob } p\end{array}\right.$
(logistic reg)
- dependent respanse $\quad y_{i}=\omega_{t+m}-\omega_{t}$ (cg. time series)

$$
t=\text { point in time }
$$

- random predictors

$$
m=\operatorname{lag}
$$

(allowing for measurement errors in the predictors) (eg. random effects ar mixed effects)

- and more!

MLR Model: Multiple Linear Kecressian
In this model, there are $p-1>1$ predictor varlbs which can be categorical or numeric.
(*) $\underset{n \times 1}{\underset{\sim}{y}}=\underset{n \times p}{X} \underset{p_{p \times 1}}{\beta}+\underset{\sim}{\underset{\sim}{n}}$
where $X=\left[\begin{array}{cccc}1 & x_{11} & \cdots & x_{n p-1} \\ 1 & x_{21} & x_{12} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & x_{n 1} & \\ 1 & x_{n 1} & x_{n p-1}\end{array}\right]$ is called the design matrix
$\beta=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p_{1}}\end{array}\right]$ is the vector of unknown regression coefficients
and $\Sigma=\left[\begin{array}{c}s_{1} \\ \xi_{2} \\ \vdots\end{array}\right] \begin{aligned} & \text { is } \\ & \text { the random vendetta and of (mentivally) } \\ & \text { ind }\end{aligned}$ independent and identically distbted noise (or measurement
error)

The fitted (or estimated) model is thus

$$
\underset{n \times 1}{\hat{y}}={\underset{n x p}{x} \hat{\beta}}_{p \times 1}^{\hat{\beta}}
$$

Where $\hat{\beta}=\left[\begin{array}{l}\hat{\beta}_{0} \\ \hat{\beta}_{1}\end{array}\right]$ is a pol vector of the least squares estimates
for each β j parameter in the model (*) above.

SLR: Simple Linear Regression
in this model, there is only one quantitative predictor, x.

$$
\underline{\sim}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right], \quad \beta=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]
$$

To solve for $\hat{\beta}$ we want to minimize

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right)^{2}
$$

w/ respect to $\hat{\beta}=\left[\begin{array}{c}\hat{\beta}_{0} \\ \hat{\beta}_{1}\end{array}\right]$.
Q) How can we express $\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$ in terms of matricies ar vectors?

$$
\mathcal{\nu}-\hat{y}=\left[\begin{array}{c}
y_{1}-\hat{y}_{1} \\
y_{2}-\hat{y}_{2} \\
\vdots \\
y_{n}-\hat{y}_{n}
\end{array}\right]
$$

So $\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\|\hat{\sim}-\hat{y}\|^{2}=\|y-x \hat{\beta}\|^{2}$
Recall the definition of the Euclidean norm: far vector $\underset{\sim}{u}=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{m}\end{array}\right]^{\top}$,

$$
\|u\|=\left[\sum_{i=1}^{m} u_{i}^{2}\right]^{1 / 2}
$$

MLR Model: Least Squares Estimates
To solve for $\hat{\beta}$, we want to minimize

$$
\|\underset{\sim}{y}-\hat{y}\|^{2}=\|\underset{\sim}{y}-x \hat{X}\|^{2}
$$

w/ respect to $\hat{\beta}$.
Note $\chi-x \hat{\beta}=\left[\begin{array}{l}y_{1}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{11}+\hat{\beta}_{2} x_{12}+\cdots+\hat{\beta}_{p-1} x_{n+1}\right. \\ \vdots \\ y_{n}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{n}+\hat{\beta}_{2} x_{n 2}+\cdots+\hat{\beta}_{p 1} x_{n n 1}\right)\end{array}\right]$
so the minimizing estimator, $\hat{\beta}$, solves

$$
\left\{\begin{array} { l }
{ \sum _ { i = 1 } ^ { n } y _ { i } - [n \hat { \beta } _ { 0 } + (\sum _ { i = 1 } ^ { n } x _ { i 1 }) \hat { \beta } _ { 1 } + \ldots + (\sum _ { i = 1 } ^ { n } x _ { i p - 1 }) \hat { \beta } _ { p - 1 }] = 0 } \\
{ \text { and } }
\end{array} \left\{\begin{array}{l}
\sum_{i=1}^{n} y_{i} x_{i k}-\left[\left(\sum_{i=1}^{n} x_{i k}\right) \hat{\beta}_{0}+\left(\sum_{i=1}^{n} x_{i 1} x_{i k}\right) \hat{\beta}_{1}+\ldots+\left(\sum_{i=1}^{n} x_{i k} x_{i p-1}\right) \hat{\beta}_{p-1}\right]=0
\end{array}\right.\right.
$$

for all $k=1, \ldots, p-1$.
in matrix notation this means that \hat{B} solves

$$
\left\{\begin{array}{l}
\left(x^{+} y-x^{\top} x \hat{\beta}\right)=0 \\
x^{\top} X \underset{\sim}{\hat{\beta}}=x^{\top} y .
\end{array}\right.
$$

These are called the "normal equations". and they imply that $\hat{\beta}_{2 s e}=\left(X^{\top} X\right)^{-1} X^{\top} \mathcal{L}$ (provided $X^{\top} X$ is is

The normal equations solve the problem of finding a $\hat{\beta}$ that minimizes $\|x-\hat{x}\|^{2}$, ie.

$$
\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} X
$$

Computational Concerns
When both n and p are large, the design matrix, X, becomes unweldy. making inverting $X^{\top} X$ very costly (in computing time).
A few common numerical techniques can help make this in version possible. These inclucle

- QR Method
factors $X=Q R$ so that $Q^{\top} Q=I_{p x p}$ and R is upper triangular
- Cholesky Decomposition
factors $X^{\top} X=R^{\top} R$, so that R is upper triangular

Other issues
If p is large, the design matrix is large and, depending on the sample size, n, X may be quite sparse if we are using catecesical predictors). Another potential issue occurs when we are using many numeric/quantitative predictors that are dosely related. In particular, if one numeric predictor, say $\underset{\sim}{x_{1}}$, is approximately (or exactly) linearly associated to another, say x_{2}
 rank of the design matrix and makes $X^{\top} X$ singular, ie. non-invertible.

MLR Model $\quad \underset{n \times 1}{Y}=\underset{n \times p}{\chi} \underset{p \times 1}{\beta}+\underset{n \times 1}{\Sigma_{n}}$ where

$$
\begin{aligned}
& E(\underline{\Sigma})=\left[\begin{array}{c}
E\left(\varepsilon_{1}\right) \\
E\left(\varepsilon_{2}\right) \\
\vdots \\
E\left(\varepsilon_{n}\right)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
0
\end{array}\right]=\text { (zero mean) and }
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
\sigma^{2} & 0 & \cdots & 0 \\
0 & \sigma^{2} & \cdots & \\
\vdots & & \cdots & \ddots \\
0 & \cdots & & \\
& \sigma^{2}
\end{array}\right]=\sigma^{2} I_{n \times n}
\end{aligned}
$$

Q) What is $\operatorname{Var}(\mathcal{L})$?

$$
\operatorname{Var}(X)=\sigma^{2} I_{n \times n}
$$

From these model assumption we have that

$$
\begin{aligned}
& E(\hat{\beta})=E\left[\left(X^{\top} X\right)^{-1} X^{\top} \underset{\sim}{\gamma}\right] \\
& =E\left[\left(X^{\top} X\right)^{\prime} X^{\top}(X \beta+\underset{\sim}{\xi})\right] \\
& =E\left[\left(X^{\top} X\right)^{-1} X^{\top} X \beta+\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon\right] \\
& =E\left[\beta+\left(X^{\top} X\right)^{-1} X^{\top} \varepsilon\right] \\
& =\beta+\left(x^{+} x\right)^{-1} x^{\top} E(\Sigma)=\beta
\end{aligned}
$$

and we also have a way to derive the (covariance (matrix) far the sample estimate $\hat{\beta}$:

Since $\operatorname{Var}\left(\sum_{\sim}\right)=\sigma^{2} I_{n \times n}$ and

$$
\begin{aligned}
& \hat{\beta}=\left(x^{+} x\right)^{-1} x^{+} \chi \\
& =\left(X^{\top} X\right)^{-1} X^{\top}(X \beta+\underset{\sim}{\Sigma}) \\
& =\underbrace{\left(X^{+} X\right)^{-1} X^{\top} X \beta}_{\text {cont }}+\underbrace{\left(X^{\top} X\right)^{-1} X^{\top} \underline{\varepsilon}}_{\text {random }} \text {, we have that } \\
& \operatorname{Var}(\hat{\beta})=\operatorname{Var}\left(\left(X^{+} X\right)^{-1} X^{\top} \underline{\varepsilon}\right) \\
& =\left(X^{+} X\right)^{-1} X^{\top} \operatorname{Var}\left(\underline{\sum}\right) X\left(X^{\top} X\right)^{-1} \\
& =\left(X^{\top} X\right)^{-1} X^{\top}\left(\sigma^{2} I_{n+n}\right) X\left(X^{\top} X\right)^{-1} \\
& =\sigma^{2}\left[\left(X^{\top} X\right)^{-1} X^{\top} X\left(X^{\top} X\right)^{-1}\right]=\begin{array}{l}
\text { here } \\
\left(X^{\top} X\right)^{-1} \\
\text { is symuptric }
\end{array} \\
& =\sigma^{2}\left(X^{+} X\right)^{-1}
\end{aligned}
$$

Now that we have $E(\hat{\beta})$ and $\operatorname{Var}(\hat{\beta})$, we can describe the sampling variability of our estimators. If we assume each ε_{i} follow a particular distribution (eg. $N\left(0, \sigma^{2}\right)$, we can also describe the sampling distribution' of $\hat{\beta}$ and construct tests or (Is fer β.

Estimating σ^{2}

The residuals of a MCR model are

$$
e=\underline{z}-\underline{y}=y-x\left(x^{\top} x\right)^{-1} x^{\top} y
$$

It can be shown that for P def $X\left(X^{\top} X\right)^{-1} X^{\top}$

- $P=P^{\top}=P^{2}$
- $I-P=(I-P)^{T}=(I-P)^{2}$

Hence, the matrix product represented by P is called the projection matrix (or the "hat "matrix) because it projects the observed y onto the subspace spanned by the design matrix (thereby producing the fitted \hat{X} values).

So now we have that the sum of the squared residuals (RSS) is:

Recall: $\left.M S E=\frac{R S S}{n-p}\right]$

$$
\begin{aligned}
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\|y-\hat{y}\|^{2} & =\|y-P y\|^{2} \\
& =\cdots \\
& =Y^{\top}(I-P E) Y
\end{aligned}
$$

with mean $E\left[Y^{\top}(I-P) Y\right]=\ldots=(n-p) \sigma^{2}$.
Therefore, an unbiased estunate for the error (ε) variance is:

$$
\hat{\sigma}^{2}=\frac{\|y-\hat{Y}\|^{2}}{n-p}
$$

HW Reurew reg to means P9561
(root) MSE
error here means modeling finds)
Key: Covariance t Variance operators uncorrelated relationships such as Π m correlated wo each $y_{i}-\bar{y}$,
Tun correlated w/ $\hat{\beta}_{1}$,
sample variance uncareseded wean sample mean.
Check Moodle for complete solus.

Note on HW 23 \#lc
The key to this problem is knowing the definition of the coefficient of determination.

$$
\begin{aligned}
& r^{2}=1-\frac{S S E}{S_{y y}} \Rightarrow 1-r^{2}=\frac{S_{S E}}{S_{i y}} \text { where } S_{i y}=\Sigma\left(y_{i}-\bar{y}\right)^{2} \\
& =(n-1) S_{y}^{2} .
\end{aligned}
$$

Now MSE (mean square error) is

$$
\begin{aligned}
M S E=\frac{S S E}{n-2} & =\frac{\left(1-r^{2}\right) S_{4 y}}{n-2} \\
& =\frac{\left(1-r^{2}\right)(n-1) S_{y}^{2}}{n-2}
\end{aligned}
$$

and RMSE (root MSE) is

$$
\text { RISE }=\sqrt{\left(1-\sigma^{2}\right)} S_{y}\left(\frac{n-1}{n-2}\right)
$$

Since you are given r, s_{y}, and n you can Solve for RMSE.

Page

PLANNING/DESIGN

232 Case 1. You recognize during the planning stage that there is/you have/the team has an incomplete understanding of the problem to be addressed

238 Case 2. You are asked to create one computational step in a multi-step process, and no one will tell you what will happen with your results

244 Case 3. You seek to incorporate sensitivity checks along the planning/development process but meet with resistance

Case 4. You recognize a better way to achieve a computational result than the proprietary way you were told to follow. Your way takes longer, so there is resistance to trying your method; but you can show it uses less data and results are less biased

Scanned with CamScanner

Page	Case Title
256	Case 5. You are asked to use a specific analysis or system design that is methodologically inappropriate given the research question or objective
263	Case 6. You are asked to design a study or system that will collect either implausible/unreasonably low amounts of data (small sample size) or unnecessarily high amounts of data

COLLECT/MUNGE/WRANGLE DATA

275	Case 7. A plan is created to collect data that cannot possibly be housed securely

284 Case 8. Data collection is carried out by scraping the Internet; you notice that at least some of the time, the results of confidentiality and privacy breeches get swept up in the scraping

292 Case 9. Your supervisor directs you to assume that if any of the data in your collection was obtained with any level of consent (whether none or opt-out), then treat all of the data as if it was obtained "with consent"
Page

Case 11. You discover that there has been no consent obtained for any of the data you are asked to collect/wrangle/munge

Case 12. You have collected/wrangled data from multiple sources and provenance information about the data is inconsistent - different people at work describe it differently and there's no real evidence about the provenance of any of the data

ANALYSIS

Case 13. You are told to implement an analysis plan that you suspect was written by someone else (who does not know it is being used) and for another problem/project

336 Case 14. Your supervisor ignores your requests for reviews of your work and tells you that no one else can review it either

Case 15. You are asked to carry out an analysis you are confident that you do not know how to do or interpret (or troubleshoot)
Page

351 Case 16. You are given code to execute and while the code runs, you discover a mistake in the program

358 Case 17. You notice that at least some of the assumptions required for interpretable results, using the code you were asked to implement, are not supportable. The code does run and yield results, but the assumptions underpinning those results are not valid

Case 18. You are asked to evaluate a new system or analyze a data set, and told the results that your evaluation or analysis should generate

374 Case 19. Your analysis of your new system suggests that there is an unexpectedly high error rate, but only for a small subgroup of users. Overall, your system's results are exactly as expected; for the subgroup, the results are the opposite of the overall result

Case 20. You institute an interim check of results and discover that there is bias in the results. The interim check is literally the middle of a multi-part process that you are working on with several colleagues, so there's no way to immediately pinpoint the source of the bias

Case 21. You are told that your results with new data must match original results (i.e., you must replicate other results), and your analyses/code are right, but they do not replicate earlier results

INTERPRETATION

401 Case 22. You discover that prior (expected) results cannot be reproduced. Sensitivity analyses strongly suggest that earlier results were spurious; reading the team's report of that analysis confirms this: the results were improperly interpreted to favour the team's objective

410 Case 23. At the end of a long project, you realize you made an error early on. The results cannot be interpreted in a valid way. Everything has to be redone

418 Case 24. At the end of a long project, you realize your supervisor made an error early on. The results cannot be interpreted in a valid way. Everything has to be redone

426 Case 25. You complete a very large set of analyses; one result happens to be "significant". A senior team member highlights this result, interpreting it without considering the context

Case 26. Your supervisor singles out one "meaningful" result to demonstrate that whatever you've been doing "is working", even after you carry out multiple simulations that show their single, "favourite," result is totally spurious
Page

DOCUMENTING YOUR WORK

452 Case 27. It takes as long to fully and transparently document your work as it does to do the work itself. Since this is just your job, not documenting it will only affect you (for the foreseeable future) -and is faster

458 Case 28. You failed to fully document your work a few months ago and now your supervisor is requesting your comprehensive documentation so that another person can replicate your work. You really only have time for minimal documentation

464 Case 29. You receive documentation of an ongoing program/analysis that lacks all information about data provenance

472 Case 30. Prior documentation of an organization-wide method is complete and correct. The method development did not include sensitivity analyses. You do a few and identify two important errors in the method

Page	Case Title
479	Case 31. You are given documentation that is not complete: it lacks details about exactly what methods and in what order were used
486	Case 32. You provide complete and correct documentation, and this gets "edited" by a supervisor so that it is now no longer complete or correct
499	Case 33. The documentation you receive specifies an analysis method that is not appropriate for the specific question that must be addressed

REPORTING

512 Case 34. You discover that incorrect results (yours and/or your team's) are going to be featured in a high-profile publication

Case 35. You follow SOP and the GLs/CE, and report your methods and results fully, but the final report has incorrect methods and results that were "edited" to suit a senior member of the - team without your knowledge or agreement

533 Case 36. Stakeholders (donors, funders, employers) are given a misleading summary of your methods and results

545 Case 37. Your sensitivity analyses that pinpoint the next logical step in your work are omitted from a final report to funders because "we could get a grant to support the team for another 5 years to figure that out!"

553 Case 38. If you report your method fully and transparently, then you will lose the opportunity to patent it

560 Case 39. If you report your method fully and transparently, then a reviewer might notice that you are not the original developer of this method - although the same method was published over 30 years ago and in another field

568 Case 40. You prepare a report identifying difficulties you encountered in your evaluation of a system your organization wants to deploy or an analysis that was done. The organization does not have a mechanism for submitting or sharing this report (or peer review of any type) either internally or with stakeholders

577 Case 41. You notice a pattern of bullying by a senior team member

587 Case 42. You are asked to do some coding/analysis by someone who is prevented from acknowledging that you helped. Your contribution cannot be recognized

596 Case 43. Your supervisor tells you that you "only need to read/review your own work" and you are not allowed to see the final/full document or work product

604 Case 44. You complete the analysis plan/system design, oversee its operation, and draft the report. You suddenly receive a "new draft" of the report that excludes all of the work you did, nor does any of the documentation of the system or work from your original report appear. You can tell without carefully reading it that the "new draft" has obvious errors in the design/analysis, results, and other reported elements, but you are asked to "approve" the new draft - and agree to be/remain a co-author on the report - within the next two days. You also have another project deadline in two days

613 Case 45. Someone on your team suggests a technical method to overcome a lack of consent from data contributors and collect their data even if they do not consent

622 Case 46. You recognize the potential for "dual use" of your team's code, data, and/or results

Case 47. You inadvertently discover that a proprietary "new method" that you were told to prepare for publication/patent application was actually published decades ago and was apparently unnoticed until you found it

