Topic: Hypothesis Testing Part I
Estimation Becap (Ch.9.1,9.2)
point estimates - a single value, based on data, that is meant to represent the "best" guess as to the value of O.
interval estimates - explicit recognition that conclusion is uncertain by providing a range of possible values for O.
There are various statistical principles that can guide estimation in the sense of determining ways in which the data shoul effect statistical cancillisions about a model parameter, A:
1. Sufficiency Principle - provided the model is adequate, identical conclusions should be drawn from any clifferent observations of the data if they have the same value of sufficient stat.

2. Weak likelihood Principle - two observed data sets that have proportional likelihoods for O should yield identical conclusions about O, provided the model is adequate.
2 Shand Likeland Deinender
Liss absenced date sets from two different (but both
adequate) prob models involving the same O
Should yield lateration anchisicity have to
A Mich Coo 3 Cit Plat has an
Other notable principles include:
4. Invariance Principle
$\nabla = c + b + b + b + b + b + b + b + b + b +$
5. Londition ality Principle
· · · · · · · · · · · · · · · · · · ·
but these are beyond the scope of this class.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

There are also specific principles regarding the farm and interpretation of statistical conclusions about 0, fram the data and an assumed model: 1. Strong Repeated Sampling Principle [statical procedures should be assessed by their hypothetical performance under wentical Lampling conditions (physical interpretection) 2. Weak Repeated Sampling Principle we should avoid stat. procedures that (for some/any values of 0) will produce misteoding conclusions most of the time 3. Bayesian Coherency Principle Tall uncertainties are described or prob. distlon's to ensures self-consistent "betting" behavior 4. Principle of Cohevent Decision Making L'ensures self-consistent decisions are made from stat analyses

This context for statistical estimation and now brings us to statistical interpretation inference. Q) What is statistical inference?. "the process of drawing conclusions about an unknown poraimeter that one wants to measure or estimate" - Encyclopedia Brittanira a quantification of uncertainty or unknowables There Principles for Statistical Interence prioritizes strong or weak repeated sampling principle 1. Sampling Theory prioritizes strong or weak litelihood principle 2. Likelihood heary prioritizes Bayesian coherency principle 3. Bayesian Theory the origins of significance testing 4. Decision Theory (N-P paradigm); pricritizes princp. of coherend decision making

Tests of Significance
Setting: Zobs = (x, x2,, Nn) The data
Mull hypothesis Ho = { distribution of (X1,,Xw
alternative v hypothesis -> HA = 2 a different statement/hypothesis concerning the distbin of (X,,Xn)
· A <u>simple hypothesis</u> completely specifies the distribution of the (random) data.
•A <u>composite hypothesis</u> , on the other hand, does not completely (and unambiguously) specify the distribution hypothesized.
Null hypotheses can arise in many
different settings. Ho may correspond to the prediction of true some scientific theory thought to be true eg) astronomical model describes mass to light ratio
· Ho may divide the possible distants into two qualitatively different types
 Ho could represent a simple set of circumstances which, in absence of evidence to the contrary, we may wish to assume holds enors in obsidate are Normal Ho could assert a complete absence of etructure in some sense es) overall ANOVA F-test for all regression coefficients

Note: The null and alternative are not necessarily given equal fasting in the context of significance tests. Notably, Ho 15 Ha serves of intrinsic interest whereas only to indicate the direction of interesting departures. The motivating question have is : is there evidence (from the data) of inconsistency will the? Green any to und the, we can risualize possible conclusions from a significance test as Reality Ho Not Reject Type Failure Type to reject

The significance level of a hypothesis test is the (often controlled, pre-determined) conditional probability of a Type I error. Significance level = K E (01) The <u>power</u> of a hypothesis test is the conditional probability of <u>not</u> making a Type I error. power = 1-B, where B=prob. type= When we say prehability type X error", what is randor le What are we describing a probability law/distbn?

· · · · · · · · · · · · · · · · · · ·	10-7-22
Ex) Say n=16, X1,,Xn	\mathbb{D} $\mathcal{N}(\mathcal{M}, 0.4^2)$
You want to test:	$\begin{cases} H_0: \ \mathcal{M} = 37\\ \\ \\ \mathcal{H}_A: \ \mathcal{M} = 36.8 \end{cases}$
(1) If $A_a = \{\overline{x} : \overline{x} < 36.9\}$ is our	rejection region
Concaring we reject the only i	f'ue observe Xohs < Ha) D12
x = Pr (Type I error)	$\overline{X} \sim \mathcal{N}(37, U_{e})$
= Pr (Reject Ho Is true)	
$= \Pr\left(\left \overline{X} < 36.9\right / M = 37\right)$	0,16
= 0.16	
· · · · · · · · · · · · · · · · · · ·	37
What is the (approximate) power Power = $I - \beta$	$\overline{\chi} \sim \mathcal{N}\left(368, \frac{0.4^2}{16}\right)$
$\beta = P_r (Type II error)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
= Pr(Fail to Reject Ho Ho is NOT to	ve)
$= P_{6}(\overline{\chi} = 736.9 M = 36.8)$	
= 0,16	
Cower = 1 - 0.16 = 0.8	4 365 366 367 369 37 37.1

Takeaway: The Key is using the sampling distible called the Exerciz (STOUP $(w_1 n = 16)$ @ Define a new rejection region, Ax that 50. the power for this test? $\alpha \approx 0.025$. What is $\chi \sim 10(37, 16)$ If the is true : $\chi = P_c(X \land ?) \land M = 37)$ SP(F) = D. d=0.25 $A_{d} = \{ \overline{\chi} : \overline{\chi} < 36.8 \}$ 36.8 36.9 37 37.1 37.2 $\beta = \Pr\left(\overline{X} \ge 36.8 \middle| m = 36.8\right)$ If the is faller our only other option is the and : X~N(3 = 6,50 So Power = 1-0,5 = 0.5 36.5 36.6 36.7 368 36.9

 $\sqrt[3]{-1} = 0.05$ 3 Repeat #2 but now assume n=64. If the is true: $\alpha = \Pr(\overline{\chi} < 3 | \mu = 37)$ d=0.025 $A_{a} = \overline{3} \overline{x} : \overline{x} < 36.9$ 36.95 37 37.05 37.1 36.85 36.9 $\beta = \Pr(\overline{\chi} \ge 36.9) \mu = 36.8$ H Ho is false, our only other option is Hig and : - X~N[36.8, 64 = 6.025 5D(K)=0.05 power = 1 - 0.075= 0.975 36.65 36.7 3675 36.8 3615 36.9 @ How would the power in #2 + #3 change if we used a smaller (or larger) x? If we fix A then. -As & decreases, so does the power (b/c B Increases), - As a increases, so does the power.

Notes on Quiz 2 #2) There is a small, but consequential typo in É, This type makes it v. difficult to determine whether Êz or Êz has a smaller MSE for n=4. Itere is the correct version: $\vec{\theta} = \frac{0.3}{n} \stackrel{\circ}{\geq} \frac{1}{X_1}; \quad \vec{\theta}_2 = \vec{U}[\vec{\theta}_1] \stackrel{\circ}{\geq} X_1$ $i \Theta_3 = \frac{4n}{Z_1 X_1}$ Oz? How is What random) Recall some former HW problems: HW 2 #3 $f(x,y) = \frac{6}{7} (x+y)^2 I \frac{3}{9} (x+y)^2 I \frac$ Given joint density: Find E[Y | X=x HW3 #1 For T= Z Xi w/ Xi all II E[T|N=n] = NE[X]and E[E(T|N=n)] = E(N)E(X)

Midsemester Adjustments 10-17-22
43% response rate
• OH Th switch to M 4-5pm
 Must visit ott by end of Unit 2 to be elligible for full participation grade.
· More m-class examples
· No more than 2 Hu/wk somewhat shartened assignments
· opportunity to redo a quiz for porticul credit

Topic Hypothesis Testing PartII (ch.9.3+9.4) X obs = (x, x2,..., Tn) Setting: Ho = Sa statement/hypothesis concerning the Ho = Edistb'n of (X1,...,XN) (H, ~) HA = { a different statement/hypothesis concerning the distb'n of (X,...,Xn) assume Typically, we also $(\chi_1, \dots, \chi_n) \equiv f(\chi; \theta)$ So the likelihood for O given Lobs 15: $\mathcal{L}(\theta) = \frac{1}{1000} f(\chi_{i}, \theta) \quad \text{ar} \quad \mathcal{L}(\theta) = \overset{2}{\underset{i=1}{\overset{i=1$ we are often interested in hypotheses Therefore, of θ . the value about $\int H_0 \cdot \Theta = \Theta_0$ $(H_1: \Theta = \Theta_1$ To conduct a "level d" hypothesis test we need 1) A test statistic re. a function of the later, say, T(X) a) A rejection rule re. Some Az= Ex: T(x) behaves some atypical way?

A popular choice of test statistic is the ratio of the likelihoods specified by Ho + Hi The Likelihood ratio (LHR) is the ratio $\mathcal{L}(\partial_{\circ})$ $/ (0, \chi_{obs}) = /$ FYE this is the Greek Capital Tambda" Q) When is I large? What does I = 1 mean about it. "H? What is the smallest/largest possible value for A? Mow, the idea is to define a rejection region (or rule) so that Sue reject the infavor of Hi only if T(Xobs) is improbable if we assume the is correct. 1e. $A_d = \begin{cases} \chi : \text{ under the assumption that} \\ Ho is correct. \end{cases}$

Grespondingly, a p-value 15
prolue = Pr (T(X) is T(XObs) or anything less likely than T(XObs) under the assumption that the is correct
Recall our example from before:
Ex) Say Xir., Xn ID N(11, 0.42)
Test Ho? $M = 37$ Gase 1: $n = 16$
Hi. M-200. (Case 2: n=69
• If d=0.025, how does increasing n change
the power of the test!
of the test?
Q) How do we choose the direction of 2
$n) n = \sum \alpha^{2} \frac{L(\theta_{0})}{2} \geq 0.15$
$ \begin{array}{c} \text{H} \\ \text$
which can often be simplified into statements about a sufficient stat, T(X) < Kr.

Ex control) Suy X1,, Xn TD $N(M, 0.4^2)$ Test Ho: $M = 37$ Case 1: $n = 16$ VS Hi: $M = 36.9$ Case 2: $n = 64$
Suppose we change H. to H.: M=36 and fix 2=0.025. • What is T(X)?
· What does "atypical" mean in this context?
$\frac{h=1b}{\chi} \xrightarrow{H_{o}} \mathcal{N}\left(37, \frac{0.4^{2}}{16}\right)$
$\begin{array}{c} A \\ A_{d} = \frac{5}{2}\chi : \overline{\chi} \leq C^{3} \\ A_{d} = \frac{5}{2}\chi : \overline{\chi} \leq C^{3} \\ Pr(\text{Reject lto}/\text{Hois connect}) \\ = 0.025 \\ C \end{array}$
In short: changing the value of M in Hi doesn't change the rejection region(6) Az at all

	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · ·
lote.	· · · · · · · · ·			
In tes	ting some	e hypothe	sís. the	re · · · ·
15 000	ertunity fo	r creative	Charles CPC	
The	test statu	STIC / I(X)	· · · · ·
and als	so for the	rejection reg	ion, Az.	
		· · · · · · · · ·		
When	omaning JA	erent tosts	of the	5
When a hypothes	omparing differences, if bot	ferent tests In tests h	of the ave the	5aml
When hypothes significa	omparing diffuses, if bol ance (evel,	ferent tests In tests h then th	of the ave the e test r	5ame Same s/ he
When hypothes significo highest	omparing differences, if bol ance (evel, power	ferent tests Th tests h then th rs prefere	of the ave the e test n ible.	5ame Same >/ The
When hypothes significo highest	omparing differences, if both ance (evel, power	ferent tests In tests h then th is prefere	of the ave the e test n ible.	Same Same s/ The
When hypothes significo highest	omparing diff ses, if bol ance (evel, power	ferent tests In tests h then th rs prefere	of the ave the e test n ible.	Jame Same 2/ Me
When hypothes significe highest	omparing differences, if both ance (evel, power	ferent tests In tests h then th is prefere	of the ave the e test n ible.	Same same
When hypothes significe highest	omparing differences, if both ance (evel, power	ferent tests In tests h then th is prefere	of the ave the e test n ible.	Same Same
When hypothes significe highest	omparing diff ses, if bol ance (evel, power	ferent tests In tests h then th is prefere	of the ave the e test n ible.	Same same
When hypothes significe highest	omparing differences, if both ance (evel, power	ferent tests h tests h then th rs prefere	of the ave the e test n ble.	Same Same

(NP) 10-19-22
The Neyman-Pearson Lemma for Most Powerful Tests
For a test of two simple hypotheses, the LHR test is at least as powerful as any other test w the same (or more restrictive - smaller) X.
le. The most powerful test of the 0=00 vs Hi: 0=0.
is the test w/ $T(X) = \frac{L(\Theta_0)}{L(\Theta_1)} = \frac{f(X_1, X_2,, X_n, \Theta_0)}{F(X_1, X_2,, X_n, \Theta_1)}$
and rejection region
$A_{d} = \left\{ X : \frac{L(b_{0})}{L(\theta_{1})} \land C_{d} \right\}$
where Cx 15 chosen so that
$P_r\left(\frac{2.00}{1.00}\right) \leq C_d$ [Ho 15 correct] = d.
Recall:
The lifelihood function for (X1,,Xn) 15
$L(\Theta) = f(X_1, \dots, X_n; \Theta).$
so, for any value of 0, L(0) is the <u>probability</u> of observing a particular set of data, (X1,,Xn).
But for an observed data set, $(\chi_1,, \chi_n)$, $\mathcal{U}(\partial)$ is a deterministic function of the possible values for ∂ .

Prouf of UP Lemma: Define $Y = II Z \times (A_{a})$ and $Y^{*} = II Z \times (A_{a})$ where $d^* \leq d$, where $\chi = (\chi_1, \dots, \chi_n)$. Note that $E[Y|H_{o}] = P_{r}(Y=1/H_{o}) = \lambda$ and $E[Y|H_1] = Pr(Y=1|H_1) = I-\beta$ (i.e. the power). And since at Ed, E[Y*[Ho] = at Ed. remains to show that $E[Y|H_i] \ge E[Y^*/H_i]$. H For observed data $\mathcal{X} = (\mathcal{X}_1, \dots, \mathcal{X}_n)$, write the corresponding observed voilves of Y and Y* by y and yt, respectively. Note $y^*[c_1f(x;\theta_i) - f(x;\theta_i)] = y [c_1f(x;\theta_i) - f(x;\theta_i)].$ To see this consider the case where $y = 1, y^{4} = 0$: Since y = 1, $\frac{L(0, j)}{L(0, j)} \leq C_{d}$, i.e. $0 \geq C_{d} f(x_{j}, 0, j) - \overline{S}(x_{j}, 0, 0)$ Next, consider the case where y=0, $y^*=1$: Here, y=0 means $C_{\lambda}f(\chi;\theta_i) - f(\chi;\theta_0) \leq 0$. Thus, multiplying both sides of the inequality by f(x, 0) and integrating w.r.t. 2 yields $C_{a}E[Y^{*}|\theta_{i}] - E[Y^{*}|\theta_{i}] \leq C_{a}E[Y|\theta_{i}] - E[Y|\theta_{i}]$ which can be rearranged so that $E[Y|\theta_0] - E[Y^*|\theta_0] = C_{\lambda} (E[Y|\theta_1] - E[Y^*|\theta_1])$ where the LHS is X-2*=0. Hence, $E[Y|\theta_i] - E[Y^*|\theta_i] \ge 0$.

Uniformly Most Powerful (UMP) 1-sided tests
For simple hypotheses $H_0: \Theta = \Theta_0$ vs $H_1: \Theta = \Theta_1$, the
rejection region, Az, depends on the sign (+/-)
of the difference $\Theta_0 - \Theta_1$.
For a given 2-level, the rejection region
for this test stays the same for any 0, 200.
Every value for that remains on the same
side of 00 has the same most powerful test
by the NP lemma. Therefore, the CRT is
uniformly most powerful for tests of composite
alternatives: $H_0: \theta = \theta_0$ is. $H_1: \theta \leq \theta_0$.
$\left(\stackrel{\sim}{\sim} H_{1} \stackrel{\sim}{\cdot} \Theta > \Theta_{2} \right)$
ALL HEARS ALL HID LOOK CONTRACTOR AND SIDE 1 47
(Q) is invert of UMP. Fest text Q. TWO SIGED IT.
Unfertunately, no!
A test of Ho: 0=00 vs. H, 0700 allows
for differences from Do in either direction.
We can define the rejection region for this test
as the Union of rejection regions for each one-sided
test at an 2/2-level of significance.
But either of these I-sided tests will have
croater power for contrain induces in the
signated space (A)
performation spaces

Ex) Suppose X1, Xn ID N(0,1) and test Ho: $\Theta = \Theta_0$ VS. HA: $\Theta = \Theta_1$, at d = 0.05 level. 1-parameter exponential family! => $T(\chi) = \chi$ is a sufficient Furthermore, $T(\chi) \sim \Lambda I/A = 1$ stat for Θ For the remove, $T(X) \sim N(\theta, \pi)$ $L(\theta) = f(\chi, \theta) = \frac{1}{12\pi} \exp\left\{-\frac{1}{2}(\chi - \theta)^{2}\right\}$ = $(\frac{1}{12\pi})^{n} \exp \{\frac{1}{2} - \frac{1}{2} \sum_{i=1}^{n} (\chi_{i} - \theta)^{2} \}$ $(\frac{1}{12\pi})^{2} \exp \left\{-\frac{1}{2}\sum_{i=1}^{n}(\gamma_{i}-\theta_{i})^{2}\right\}$ $=\frac{\mathcal{L}(\Theta_{0})}{\mathcal{L}(\Theta_{1})}=$ $(4\pi)^{n} \exp \{\frac{1}{2} + \frac{1}{2} \sum_{i=1}^{n} (\chi_{i} - \theta_{i})^{2} \}$ $= e_{X} p \left\{ -\frac{1}{2} \sum_{i=1}^{2} (x_{i} - \theta_{i})^{2} - (-\frac{1}{2} \sum_{i=1}^{2} (x_{i} - \theta_{i})^{2}) \right\}$ $= e_{XP} \sum_{j=1}^{2} \frac{1}{2} \sum_{i=1}^{n} \left((\chi_{i} - \Theta_{i})^{2} - (\chi_{i} - \Theta_{i})^{2} \right)^{2}$ $= \exp \left\{ -\frac{1}{2} \sum_{i=1}^{n} \left[\left(\frac{x_{i}}{x_{i}} - \overline{x} + \overline{x} - \theta_{i} \right)^{2} - \left(\frac{x_{i}}{x_{i}} - \overline{x} + \overline{x} - \theta_{i} \right)^{2} \right] \right\}$ $= etp \left\{ \frac{1}{2} \sum_{i=1}^{\infty} \left[(\chi_i - \overline{\chi})^2 + \lambda(\chi_i - \overline{\chi})(\overline{\chi} - \Theta_i) + (\overline{\chi} - \Theta_i)^2 \right] \right\}$ $-\left[(\chi_{i}-\overline{\chi})^{2}+2(\chi_{i}-\overline{\chi})(\overline{\chi}-\Theta_{i})+(\overline{\chi}-\Theta_{i})^{2}\right]^{2}$ $e_{XP} \left\{ n \left[\overline{X} \left(\theta_{o} - \theta_{i} \right) + \underline{n} \left(\theta_{i}^{2} - \theta_{o}^{2} \right) \right] \right\}$

Supplemental notes for 10-19-22
(Note: l'encavage you to try this cut an) your own before reading the soln.)
(*) To see how we get this final expression consider:
$ \sum (\chi_i - \theta_0)^2 = \sum (\chi_i - \overline{\chi} + \overline{\chi} - \theta_0)^2 $ = $ \sum [(\chi_i - \overline{\chi})^2 + (\overline{\chi} - \theta_0)^2 + 2(\chi_i - \overline{\chi})(\overline{\chi} - \theta_0)] $
$= \sum_{i=1}^{2} \left(\chi_{i}^{2} - 2\chi_{i}\chi + \chi^{2} \right) + \left(\chi^{2} - 2\theta_{0}\chi + \theta_{0}^{2} \right) + \left(2\chi_{i} - 2\chi_{1} \right) \left(\chi^{2} + \theta_{0}^{2} \right)$
$= \sum_{i \neq i} \left(\chi_{i}^{2} - 2\chi_{i}\chi + \chi^{2} + \chi^{2} - d\theta_{i}\chi + \theta_{0} + d\chi_{i}\chi - d\chi^{2} - d\theta_{0}\chi \right)$
$= \overline{Z}\chi_{i}^{2} - \partial n\overline{\chi}^{2} + n\overline{\chi}^{2} + n\overline{\chi}^{2} - \partial n\theta_{0}\chi + n\xi + \partial n\chi$ $- 2n\overline{\chi}^{2} - \partial n\theta_{0}\overline{\chi} + 2n\theta_{0}\overline{\chi}$ $= \overline{Z}\chi_{i}^{2} - \partial n\theta_{0}\overline{\chi} + n\theta_{0}^{2}.$
Similarly, for $(\chi_1 - \Theta)^2$ we have: $\sum (\chi_1 - \Theta)^2 = \sum \chi_1^2 - 2n \Theta i \chi + n \Theta_1^2$
And therefore,
$Z(\chi_i - \theta_i)^2 - Z(\chi_i - \theta_i)^2 = 2n \overline{\chi}(\theta_i - \theta_i) + n(\theta_i^2 - \theta_i^2)$

10-21-2	2
Duality of Confidence Intervals and	•
Hypothesis Tests	•
γ	•
Kecall Az=1x: 1(x) is untisual enough under Hoy	•
represents the subset of the joint sample space, R	
for all values of $\chi = (\chi_1, \chi_2,, \chi_n)$ such that	•
we reject the to the level of.	•
All ather possible values of x lie in what we	•
call the "acceptence region"	•
$(A(\theta_{i}) = 3 \times : \chi \notin A_{i})$	•
$\frac{1}{2}$	•
that is, the subset of it for which we would fail to	•
reject no.0-00 at the level x.	•
Ex) For XI, Xn TD N(0,1) if we test	•
Ho: 0=00 vs Hi. 0>00 at the a-level and	•
reject for X & A_= {X : X - Do > C_ where c_ is the quanti	le
such that $Pr(X - \Theta > C_{d}(H_{0}) = d$, le. $C_{d} = l_{gr-d}/\pi n$.	•
X~N(0,1) Then we fail to reject Ho	•
$\overline{X} - 0 \sim \mathcal{N}(0, t)$ when $\overline{X} - 0 \sim \frac{\beta}{2} (\alpha) / - \overline{m}$	•
$\pi(\overline{\chi}-\theta) \sim \mathcal{N}(0,1)$ $\mathcal{N}(0,1)$ 	•
gui-of	ح
Hence ALOO) = 22. X - G(A/-In 20)	- ل

Setting: Formally, let Θ be a parameter for a family of probability distributs and denote the set of all possible values of Θ be the parameter space, Θ . Let $\chi = (\chi_1,, \chi_n)$ be the random vector of data.
Theorem : From Tests to Confidence Regions
1.f far every value of $\Theta_{\circ} \in \Theta$ there is a level- α hypothesis test of $H_{\circ} : \Theta = \Theta_{\circ}$ will corresponding a coeptaince region, $A(\Theta_{\circ})$, Then, the set $C(X) = \{\Theta : X \in [A(\Theta)]\}$ is a $(i-\alpha) \times 100\%$ confidence region for Θ .
$P_{\rm ROOF}:$
For A to be the acceptance region of a level- α test means $P_r(X \in A(\theta_o) \theta = \theta_o) = 1 - \alpha$. So, $P_r(\theta_o \in C(X) \theta = \theta_o) = P_r(X \in A(\theta_o) \theta = \theta_o) = 1 - \alpha$ by definition of $C(X)$.
Main Idea
A $(1-d) \times 100\%$ conf. region for Θ consists of all those values of $\Theta \circ \in \Theta$ for which the hypothesis $H_{0}: \Theta = \Theta_{0}$ will NOT be rejected at level d.

Theorem: From Confidence Regions to Tests
If $C(X)$ is a $(1-d) \times 100\%$ confidence region for Θ ; i.e. for every Θ_0 , $P_r(\Theta_0 \in C(X) \Theta = \Theta_0) = 1 - \alpha$.
Then an acceptance region for a test at level x of the hypothesis $H_{0}: \Theta = \Theta_{0}$ is $A(\Theta_{0}) = \{X: \Theta_{0} \in C(X)\}.$
$\frac{\operatorname{Proof}:}{\operatorname{IF}}$ If $C(X)$ is such that $\operatorname{Pr}(\Theta \circ C(X) \Theta = \Theta \circ) = 1 - d$, then the test of $H \circ \Theta = \Theta \circ$ has level α because $\operatorname{Pr}(X \in H(\Theta \circ) \Theta = \Theta \circ) = \operatorname{Pr}(\Theta \circ C(X) \Theta = \Theta \circ) = 1 - \alpha$.
Main Idea The hypothesis $H_0: D = \Theta_0$ is not rejected if Θ_0 lies in the confidence region for Θ .
Hint: Pouse & ask yourself - what is raindown? X - random O - unknown, Fixed x - observed/fixed O., O fixed
Worksheet practice.

Stat 61 In-Class Worksheet

Original group members:

 $U(M) = \iint_{i=1}^{n} (\underbrace{f_{2+1}}_{0,16}) \exp\left\{-\frac{(\chi_{i}-\mu)^{2}}{2\cdot0.16}\right\} = (\text{const})^{n} \cdot \exp\left\{-\frac{\sum_{i=1}^{n} (\chi_{i}-\mu)^{2}}{2(0.16)}\right\}$

Suppose we observe X_1, \ldots, X_n IID data points from a $N(\mu, 0.4^2)$ distribution where n = 16 and we wish to test $H_0: \mu = 37$.

1. For a simple alternative, $H_1: \mu = 36.8$ with $\alpha = 0.025$, what is the rejection region A_{α} ? What is the power of this test?

$$\int = \frac{\mathcal{L}(\mathcal{M}_{0})}{\mathcal{L}(\mathcal{M}_{1})} = \frac{\exp\left[-\frac{\kappa}{\mu}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1}6)}\right]}{\exp\left[-\frac{\kappa}{\mu}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1}6)}\right]\right]} = \exp\left[-\frac{\kappa}{\mu}\left[\frac{\chi_{1}-3\epsilon}{2(\alpha_{1}6)}\right]\right]}{\exp\left[-\frac{\kappa}{\mu}\left[\frac{\chi_{1}-3\epsilon}{2(\alpha_{1}6)}\right]\right]} = \frac{\exp\left[-\frac{\kappa}{\mu}\left[\frac{\chi_{1}-3\epsilon}{2(\alpha_{1}6)}\right]\right]}{\exp\left[-\frac{\kappa}{\mu}\left[\frac{\chi_{1}-3\epsilon}{2(\alpha_{1}6)}\right]\right]}$$
So the rejection region $s_{1}^{2}\frac{(\chi_{1}-\chi_{0})^{2}}{2(\alpha_{1}6)}\right]$ $\exp\left[-\frac{\kappa}{\mu}\left[\frac{\chi_{1}-3\epsilon}{2(\alpha_{1}6)}\right]\right]$
 $A_{A} = \frac{1}{2}\chi: \exp\left[2(\alpha_{1})n\chi\right]_{1}^{2}\kappa \cosh\left[-\frac{\kappa}{2}\right]$

$$A_{A} = \frac{1}{2}\chi: \exp\left[2(\alpha_{1})n\chi\right]_{1}^{2}\kappa \cosh\left[-\frac{\kappa}{2}\right]$$

$$A_{A} = \frac{1}{2}\chi: \frac{\kappa}{2}\frac{1}{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\kappa \cosh\left[-\frac{\kappa}{2}\right]$$

$$A_{A} = \frac{1}{2}\chi: \frac{\kappa}{2}\frac{1}{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\kappa \cosh\left[-\frac{\kappa}{2}\right]$$

$$A_{A} = \frac{1}{2}\chi: \frac{\kappa}{2}\frac{1}{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]$$

$$A_{A} = \frac{1}{2}\chi: \frac{\kappa}{2}\frac{1}{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]$$

$$A_{A} = \frac{1}{2}\chi: \frac{\kappa}{2}\frac{1}{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]$$

$$A_{A} = \frac{1}{2}\chi: \frac{\kappa}{2}\frac{1}{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]$$

$$A_{A} = \frac{1}{2}\chi: \frac{\kappa}{2}\frac{1}{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{0}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{1}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{1}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{1}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{1}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{1}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{1}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{1}}{2(\alpha_{1})}\chi\right]_{1}^{2}\left[\frac{\chi_{1}-\chi_{1}}$$

2. How does the rejection region change if we increase n to n = 64 but keep everything else the same?

3. How would the power change if we decreased α but kept everything else the same?

4. How would A_{α} change if we instead tested against $H_1: \mu = 36$?

The Neyman-Pearson lemma implies that, for testing $H_0: \mu = \mu_0$ vs $H_1: \mu = \mu_1$ with $\mu_1 < \mu_0$, the test that rejects for $\bar{X} < c_{\alpha}$ is most powerful of all tests with comparable α .

5. Is the test in (1) above uniformly most powerful for any pair of hypotheses? If so which ones and why?

 $[R. M_{0} \ge \overline{X} - 0.1 f_{1}(0.025)] |S a 1-Sided 97.5% (I for M.)$

Topic: Hypothesis Testing Part III 10-24-22
Re-cap
Simple Ho vs simple Hi
The UP known concludes that for testing
$$\binom{H_1:\theta=0}{H_1:\theta=0}$$
, $\theta_0 \neq 0$,
the nost powerful level-d test is the likelihood ratio test.
The inst powerful level-d test is the likelihood ratio test.
Test statistic: $\Lambda = \frac{L(0_0)}{L(0_1)}$ where $L(0) = f((X_1, \dots, X_n); 0)$
Test statistic: $\Lambda = \frac{L(0_0)}{L(0_1)}$ where $L(0) = f((X_1, \dots, X_n); 0)$
Rejection Region: $A_X = \sum \sum : \frac{L(0_0)}{L(0_1)} \leq C_X \int d_X = 0$.
Rejection Region: $A_X = \sum \sum : \frac{L(0_0)}{L(0_1)} \leq C_X \int d_X = 0$.
Rejection Region: $A_X = \sum \sum : \frac{L(0_0)}{L(0_1)} \leq C_X \int d_X = 0$.
Rejection Region: $A_X = \sum \sum : \frac{L(0_0)}{L(0_1)} \leq C_X \int d_X = 0$.
Rejection Region: $A_X = \sum \sum : \frac{L(0_0)}{L(0_1)} \leq C_X \int d_X = 0$.
Rejection Region: $A_X = \sum \sum : \frac{L(0_0)}{L(0_1)} \leq C_X \int d_X = 0$.
Rejection Region: $A_X = \sum \sum : \frac{L(0_0)}{L(0_1)} \leq C_X \int d_X = 0$.
Thus, power = $1 - \beta = \Pr((X \in A_X | H_1: 0 = 0)) = X \notin A_X$
Thus, power = $1 - \beta = \Pr((X \in A_X | H_1: 0 = 0)) = X \notin A_X$
Thus, power = $1 - \beta = \Pr((X \in A_X | H_1: 0 = 0)) = X \notin A_X$
Thus, power = $1 - \beta = \Pr((X \in A_X | H_1: 0 = 0)) = X \notin A_X$
Thus, power = $1 - \beta = \Pr(X \in A_X | H_1: 0 = 0) = X \notin A_X$
Thus, power = $1 - \beta = \Pr(X \in A_X | H_1: 0 = 0)$
 M_X
The solution of the strength of the strength of the strength of exidence against ho:
The derivation of the strength of the st

Simple to us composite H, Since Ad does not change for any other value of Oi that lies on the same side of Oo as O, In the tests of simple the us simple the, the uniformly most powerful test of SHO: 0=00 or SHO: 0=00 Hi:0>00 SHO: 0<00 is the likelihood ratio test. As before, 2= Pr(Type I error) = Pr(X = Az) H: 0=0.) But B and the power may vary for different parameter values in Hi: eg. p=Pr(Type Ilener) = Pr(X & Aal H.: 0700) power = $P_r(X \in A_d | H_i: 0 > 0)$ $\left(\mathcal{L}^{n} \right)$ For a two-sided alternative {H. 0=0. H. 0=0. H. 0=0. no uniformly most powerful test. However, we can derive a level-& test by finding Agy U Agy, where Agy is the level-72 RR for Ho: 0-00 and A: 15 the level - 2 RR for 2H, :0200.

Generalized LHR Test
For composite Hi, we can use a general version of the LHR test where the test
statistic is now read as "the max
$\Lambda - (Max L(\theta))$ value of the likelihood for all
$\int \mathcal{L} = \frac{1}{\max} \mathcal{L}(\theta)$
where $\Omega = \Theta$ is the entire parameter space and
$\omega_0 \in (-)$ is the subspace specified log to,
and the rejection region, Hz, consists of small values of _1.
Recall, $\tilde{\Theta}_{mLE}$ is the maximizer of $\mathcal{L}(\Theta)$ for $\Theta \in \mathcal{S}$.
$(\cdot) = 37$
Ex) XI ID N(H, 0.42) test 74: M # 37 at 2-level.
First, $L(0) = \exp \left\{ -\frac{\sum_{i=1}^{n} (x_i - u)^2}{2l(0,16)} \right\}$ and
$ \begin{cases} \mathcal{I} = (-\infty, \infty) & \text{and} & \mathcal{M}_{\text{MLE}} = \overline{X} \\ \omega_0 = \overline{2} 37\overline{3} \end{cases} $
Then we have $\Lambda = \exp \left\{ \frac{2}{2(0.16)} \left[\sum_{i=1}^{2} (X_i - \overline{X})^2 - \sum_{i=1}^{2} (X_i - \overline{X})^2 \right] \right\}$
and $A_{d} = \frac{3}{2} \times \frac{1}{4} \times \frac{1}{6} = \frac{3}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{6} \times $
where C_2 is such that $\Pr\left(\sum_{i=1}^{n} (\chi_i - 3\chi)^2 - \sum_{i=1}^{n} (\chi_i - \chi)^2 > C_2 \middle H_0: M = 3\chi\right) = \chi$.

Theorem: Asymptetic Distloin of the Gen-LHR
Provided the joint density (or mass) function f((x,,xw, 0) is "smooth enough",
$-2\ln(-\Lambda) \sim (m) \text{as} n \to \infty,$ where $m = Dim(-\Omega) - Dim(\omega_0)$.
Useful Identity: $\sum_{i=1}^{2} (\chi_i - \mu_o)^2 = \left(\sum_{i=1}^{n} (\chi_i - \chi_i)^2\right) + n(\chi - \mu_o)^2$
Proof: See supplementary material for 10-19-72.
$\begin{aligned} & \text{Ex} (\text{avf}^{1} \text{ d}) \\ & \text{A}_{\mathcal{A}} = \left\{ \chi : \underbrace{\mathbb{P}}_{i}^{2} (X_{i} - \overline{3}7)^{2} - \underbrace{\mathbb{P}}_{i=1}^{2} (X_{i} - \overline{x})^{2} > C_{2} \right\} \\ & = \left\{ \chi : \underbrace{\mathbb{P}}_{i=1}^{n} (\chi_{i} - \overline{\chi})^{2} + n \left(\overline{\chi} - 37 \right)^{2} - \underbrace{\mathbb{P}}_{i=1}^{n} (X_{i} - \overline{\chi})^{2} > C_{2} \right\} \\ & = \left\{ \chi : n (\overline{\chi} - 37)^{2} > C_{2} \right\} = \left\{ \chi : \frac{(\overline{\chi} - 37)^{2}}{(\mathbb{P}^{-16}/\mathbb{P})} > C_{3} \right\}. \end{aligned}$
Recall, if $X \sim N(\mathcal{U}, \frac{\mathcal{D}}{r})$ then $\frac{(X - \mathcal{U})}{(\mathcal{V}/m)} \sim N(\mathcal{O}_{r})$ and so $\frac{(X - \mathcal{U})^{2}}{(\mathcal{D}^{2})} \sim \chi^{2}_{(1)}$
$c_3 = qchisq(1-d, df=1, lower, fail = T)$

	-26-72
· Review Worksheet Solution	3
Note: For two-sided H,, we will use the generalized LHR test.	· · · · · · ·
Ex: Two-Sided Test (H. P= 1/2	
Suppose $X \sim Bin(n,p)$ and test $\{H_i: p \neq \frac{1}{2} \text{ at} at an d = 0.05 significance level. Suppose n = 10.$	· · · · · ·
First note that $L(p) = \begin{pmatrix} n \\ x \end{pmatrix} p^{X} (1-p)^{n-X}$ and that $p_{ALE} = \frac{X}{n}$, $Also$, $\mathcal{R} = \begin{bmatrix} 0, 1 \end{bmatrix}$ and \mathcal{C}_{o}	= { 1 }.
Our test statistic is	
$\int_{L} = \frac{p \in \{\frac{1}{2}\} L(p)}{p \in \{\frac{1}{2}\}} = \frac{L(\frac{1}{2})}{L(x)} = \frac{(x) \pm (1-\frac{1}{2})^{n-1}}{(n)(x)}$	· · · · · ·
$P \in \mathcal{R}(LP) \qquad \qquad \mathcal{L}\left(\frac{n}{n}\right) \qquad \qquad \left(\chi\right)\left(\frac{n}{n}\right)^{n}\left(1-\frac{n}{n}\right)^{n} \\ = \cdots = \left(\frac{n}{2x}\right)^{n}\left(\frac{n}{2(n-x)}\right)^{n}$	- X
and our rejection region s	
$A_d = \frac{2}{2} \times \left(\frac{n}{ax}\right) \times \left(\frac{n}{a(n-x)}\right) \sim c_d$	· · · · · ·
where C_{J} satisfies $P_{f}\left(\frac{n}{2x}\right)^{\chi}\left(\frac{n}{2(n-\chi)}\right)^{n-\chi} \leq C_{d}\left(\frac{p}{p}\right)^{\chi}$	2)=0.05
= there's work you must	5100

To solve for an explicit rejection region note that $\Lambda = \left(\frac{n}{2x}\right)^{\chi} \left(\frac{n}{a(n-\chi)}\right)^{n-\chi}$ 1 7× (n-x)n-x $\binom{n}{2}$ $A_d = \frac{1}{2} \chi : \left(\frac{n}{ax}\right)^{\chi} \left(\frac{n}{a(n-\chi)}\right)^n$ < czy So $\equiv \{\chi: \frac{1}{\chi^{x}(n-\chi)n-\chi} \land C'_{x} \}$ $= \{x : \ln(x) - [x\ln(x) + (n-x)\ln(n-x)] < C'_{\alpha}\}$ $= \{x : x | n(x) + (n-x) | n(n-x) > c_{x}^{*} \}$ plot this $A_{a} = \frac{1}{2} \times : |\chi - \frac{N}{2}| > k_{a}$ $\chi[n(x)+(n-x)]n(n$ Takeaway $\left(\frac{n}{2x}\right)^{\chi} \left(\frac{n}{2(n-\chi)}\right)^{n-\chi}$ is small when χ is for from $\frac{n}{2}$

Now we can explicitly solve for an 2 = 0.05 rejection region:
$\begin{array}{l} 0.05 = P_{r}\left(\chi - \frac{n}{2} > K \left H_{0}: p = k_{2}\right) \\ = P_{r}\left(\chi - \frac{n}{2} > K \alpha \chi - \frac{n}{2} < -K \left H_{0}: p = \frac{1}{2}\right) \\ = P_{r}\left(\chi > K + \frac{n}{2}\left[p = k_{1}\right] + P_{r}\left(\chi < \frac{n}{2} - \frac{K}{p} - \frac{k_{2}}{2}\right) \end{array}$
Which implies
$\left(k + \frac{h}{2} = 9binom\left(1 - \frac{0.05}{2}, n = 10, p = k_2, loweritail = T\right)$
$\begin{pmatrix} n \\ 2 \end{pmatrix} = K = q \operatorname{binom} \left(\frac{0.05}{2}, n = 10, p = K_2, \operatorname{lower.tail} = T \right)$
le. K=3, And finally,
A, = {x: (x-=) > 33
· · · · · · · · · · · · · · · · · · ·

(n = 10)Ex contid : Two-Sided (I CI For D, supposing Xobs a 95% Find By definition of d. $0.05 = P_r(|\chi - \frac{n}{2}| > 3 | H_0 - p = K_2)$ = $P_{r}(\chi > 3 + \frac{n}{2}(p = k_{1}) + P_{r}(\chi < \frac{n}{2} - 3/p = k_{2})$ $= P_{r}(\chi > 8|_{p} = \frac{1}{2}) + P_{r}(\chi < 2|_{p} = \frac{1}{2})$ X ~ Bin(10, 1/2) 5 0 All red mass functions sum to 0,05 6.95 black functions Mass all SNM thus (I for p is (2,10) a 95% and uninclusive $\mathcal{O}(\mathbf{r})$ Inclusive

Ex) $(H_{o}; p = \frac{1}{2})$ Suppose X~Bin(n,p) and test 74, p= 1 at an d = 0.05 significance level. Suppose n = 170, $X_{obs} = 63$. $P_{s}(|\chi - \frac{n}{2}| > 3 | H_{o} p = K) = \chi = 0.05$ So, O.US = Pr(X-2>3 ~ x-2<-3/Ho:p=k) $= P_{C}(\chi > 3 + \frac{n}{2}(H_{o}) + P_{C}(\chi - \frac{n}{2} - 3(H_{o}))$ Since $X = Z_{i}^{e}$, Y_{i} , where $Y_{i} \stackrel{\text{TD}}{\longrightarrow} Bern(p)$, by as $h \rightarrow \infty$ have the CLT, $\stackrel{\rho}{\longrightarrow} \stackrel{n}{\longrightarrow} \mathcal{N}(0,1)$ <u>p(1-p)</u> an $\frac{\frac{1}{n} \chi - \rho}{\sqrt{\rho(-\rho)}} \stackrel{n \to \infty}{\sim} N(0, 1)$ $0.05 = \Pr\left(\frac{\pm \chi - P}{\frac{1}{p(r-P)n}} > \frac{\pm (3+\frac{n}{2}) - P}{\frac{1}{p(r-P)n}}\right) \#_{0}: P = h$ + $P_r\left(\frac{\pm X - P}{1 p(r-PVn)} \land \frac{\pm (\frac{x_2}{2} - 3) - P}{1 p(r-PVn)} \middle| H_0: P = h\right)$ $P_r(2 > \frac{1}{n(3+\frac{n}{2})-P}) + P_r(2 < \frac{1}{n(2-3)-P})$

quantiles By definition have of WC $0.05 = P_{f}(7) + P_{f}(7) + P_{f}(7) + P_{f}(7)$ $= P_{0}\left(\frac{1}{1} \times \frac{1}{1} - \frac{1}{1} + \frac{1}{$ + $P_r\left(\frac{+X-P_o}{1R(r-R)/n} \ge \frac{1}{p(r-R)/n}\right)$

Hence we will fail to reject Ho:p=po 17 Trobs - Po > 1.96 Pro (1-po) m T Xobs - Po F $\sqrt{\frac{P_o(1-P_o)}{N}}$ By rearranging the above (takes some work and analysis of terms) we plug in Xobs = 63 and find a 15% p to be (asymptotic) CI for 0.00698,0.7399 See the next two pages for additional details. This pg. & the previous are the most important to understand.

n Xobs - Po 5 1.96 Since we Ftok when P. (1-P.) $\ell = \frac{63}{170} - \int_{0}^{0} > 1.96 - \int_{170}^{0} \frac{1}{170}$ $l! \left(\frac{\frac{63}{170} - \rho_0}{\frac{170}{1.96}}\right)^2 > \frac{\rho_0 (\mu - \rho_0)}{170}$ $\frac{\left(\frac{63}{170} - \rho_{0}\right)^{2}}{\rho_{0}(1 - \rho_{0})} \neq \frac{\left(\frac{1.96}{170}\right)^{2}}{(70)}$ is a quadratic Fuctor of Po $\frac{16.2}{170} - \frac{2.63}{170} \rho_0 + \rho_0^2 > \frac{1.96^2}{170} \rho_0 + \rho_0^2 > \frac{1.96^2}{170}$ <u>1.96°</u> 170 G = b = + 1.962 $IP. \quad \left(\frac{63}{170}\right)^2 - \frac{2(63)}{170} \rho_0 + \rho_0^2 > \frac{1.96^2}{170} \rho_0 - \frac{1.96^2}{170} \rho_0^2$ $H_{e} = \left(\frac{63}{170}\right)^{2} > \rho_{o}^{2} \left(-1 - \frac{1.96^{2}}{170}\right) + \rho_{o} \left(\frac{2(13)}{170} + \frac{1.96^{2}}{170}\right)$ $0 > p_{0}^{2} \left(-1 - \frac{1.96}{1.70} \right) + p_{0} \left(\frac{2163}{170} + \frac{1.96}{1.70} \right) - \left(\frac{63}{1.70} \right)^{2}$ $-\left(\frac{2.63}{170}+\frac{196^{2}}{170}\right)^{+}-\left(\frac{4(-1-\frac{196^{2}}{170})(-(\frac{63}{170})^{2})}{(\frac{1}{170})(-(\frac{63}{170})^{2})}\right)$ Thus po < 2 (-1- 1.962 170) Then, do the same analysis for $\frac{1}{\sqrt{P_{o}(1-P_{o})}} \leq -1.96$ and solve for CI bounds.