Topic: Hypothesis Testing Part $I^{10-5 / 20}$
Estimation Recap
point estimates - a single value, based on data, that is meant to represent the "best" guess as to the value of θ.
interval estimates - explicit recognition that conclusion 15 uncertain by providing a range of possible values far θ.

There are various statistical principles that can guide estimation in the sense of determining ways in which the data
should effect statistical conclusions about a model parameter, θ :

1. Sufficiency Principle - provided the model is adequate, identical conclusions should be drawn from any different observations of the data if they have the same value of sufficient stat.
2. Weak likelihood Principle - two observed data sets that have proportional likelihoods for θ should yield identical conclusions about θ, provided the model is adequate.
3. Strong Likelihood Principle two observed data sets frow two different (but both adequate) prob models nuolving the same θ should yield identical canclusians about θ If their likelihoods ave proportional
other notable Principles include:

4 : Invariance Principle
5. Conditionality Principle
but these are beyond the scope of this class.

There are also specific principles regarding the farm and interpretation of statistical conclusions about θ, from the data and an assumed model:

1. Strong Repeated Sampling Principle -statical procedures should be assessed by their hypothetical performance under identical sampling conditions (physical interpretation)
2. Weak Repeated Sampling Principle We should avoid stat procedures that (for somvelany values of θ) will produce misleading conclusions most of the time
3. Bayesian Coherency Principle
all uncertainties are described w/ prob distlon's to ensures self casistent "betting" behavior
4. Principle of Coherent Decision Making Ensures self-consistent decisions are made from stat analyses

This context fer statistical estimation and interpretation now brings us to statistical inference.
Q) What is statistical inference?
"the process of drawing conclusions about an unknown parameter that one wants to measure or estimate". -Encylopedia Britannica

There is a quantification of uncertainty or unkucuables.
Principles for Statistical Inference

1. Sampling Theory - prioritizes strong or weak repeated sampling principle
2. Likelihood Theory - prioritizes strung or weak lifelihoud principle
3. Bayesian Theory - prioritizes Bayesian coherency principle
the origins of
4. Decision Theory - significance testing (N-P paradigm); pricritrzes prince: of coherent decision making

Tests of Significance
Setting: $x_{\text {obs }}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ The data
"null" n prothesis? Ho $=\left\{\begin{array}{l}\text { a statement/hypothesis concerning the } \\ \text { distribution of }\left(X_{1}, \ldots, X_{n}\right)\end{array}\right.$ appothesisise $\rightarrow H_{A}=\left\{\begin{array}{l}\text { a different statement/hyposthesis concerning } \\ \text { the distb'n of }\left(X_{1}, \ldots, X_{n}\right)\end{array}\right.$

- A simple hypothesis completely specifies the distribution of the (random) data.
- A composite hypothesis, on the other hand, does not completely (and unambiguously) specify the distribution hypothesized:
Dull hypotheses can arise in many different settings:
- Ho may correspond to the prediction of some scientific theory thought to be true
eg) astronomical model describes mass to light ratio
- Ho may divide the possible diction's into two qualitatively different types
eg) com is fair
- Ho could represent a simple set of circumstances which, in absence of evidence to the contrary, we may wish to assume holds
eg) errors in obs data are Normal
- Ho could assert a complete absence of structure in some sense
eg) overall Anovia F-test for all regression coefficients

Note: The null and alternative are not necessarily given equal footing in the context of significance tests. Notably, Ho is of intrinsic interest whereas Ha serves only to indicate the direction of interesting departures.
The motivating question here is: is there evidence (from the data) of inconsistency w/ Ho?

Grin any Ho and H_{A}, we can visualize our possible conclusions from a significance test as Reality

The significance level of a hypothesis test is the (often controlled, predetermined) conditional probability of a Type I error.

Significance level $=\alpha \in(0,1)$

The power of a hypothesis test is the conditional probability of not making a Type II error.

$$
\text { power }=1-\beta \text {, where } \beta=\beta \text { probe of } \leqslant(0,1)
$$

8) When we say "probability of type x error What is random??
le what are we describing w\% a poobability law/distbin?

Ex) say $n=16, X_{1}, \ldots, X_{n}$, $N\left(\mu, 0.4^{2}\right)$
You want to test: $\left\{\begin{array}{l}H_{0}: \mu_{N S}=37 \\ H_{A}: \mu=36.8\end{array}\right.$
(1) If $A_{\alpha}=\{\bar{x}: \bar{x}<36.9\}$ is our rejection region Cmieaning we reject H_{0} only if we observe $\bar{X}_{\text {ohs }} \in A_{\alpha}$) What is the significance level of our test, α ?

$$
\begin{aligned}
\alpha & =\operatorname{Pr}(\operatorname{Type} I \text { error) } \\
& =\operatorname{Pr}\left(\text { Reject } H_{0} / H_{0} \text { is true }\right) \\
& =\operatorname{Pr}(\bar{X}<36.9 / \mu=37) \\
& =0.16
\end{aligned}
$$

What is the (appercimate) power?
Power $=1-\beta$

$$
\begin{aligned}
\beta & =\operatorname{Pr}(\text { Type II error }) \\
& =\operatorname{Pr}\left(\text { Fail to Reject } H_{0} / H_{0} \text { is No trove }\right) \\
& =\operatorname{Pr}(\bar{X} \geqslant 36.9 \mid \mu=36.8) \\
& =0.16
\end{aligned}
$$

$$
\text { Power }=1-0.16=0.84
$$

Takeaway: The key is using the sampling distill of $X!$

Group Exercize:
(2) Define a new rejection region, A_{α}, so that $\alpha \approx 0.025$. What is the power for this test?

$$
\begin{aligned}
& \alpha=\operatorname{Pc}(\bar{x}<? \mid \mu-37) \\
& A_{\alpha}=\{\bar{x}: \bar{x}<36.8\}
\end{aligned}
$$

If H6 is true: $\bar{X} \sim N\left(37, \frac{\left.0.41^{2}\right)}{16}\right.$

$$
\beta=\operatorname{Pr}(\bar{x} \geqslant 36.8 / \mu=36.8)
$$

$$
=0.50
$$

I H_{0} is fats, or only other
option is H_{A} and

So Power $=1-0.5=0.5$

$$
\begin{aligned}
& \text { (3) Repeat } A 2 \text { but now assume } n=64 \\
& \alpha=\operatorname{Pr}\left(\bar{X}<\{1 \mu=37) \quad \text { If Ho is true: } \quad \bar{\sim} \sim \mu\left(37, \frac{0.1^{2}}{64}\right)\right. \\
& A_{2}=\{\bar{x}: \bar{x}<36.9\}=0.05
\end{aligned}
$$

(3) Repent \#2 but now assume $n=64$.

$$
\beta=\operatorname{Pr}(\bar{X} \geqslant 36.9 \mid \mu=36.8)
$$

$$
=0.025
$$

If H_{0} is false our only other
option is H_{A} and:

$$
\text { power }=1-0.025
$$

$$
=0.975
$$

(4) How would the power in $\# 2$ t $\# 3$ change if we used a smaller (or larger) α ? If we fix n then:

- As α decreases, so does the power (bl β increases).
- As a increases, so does the power.

Notes on Quiz 2
\#2) There is a small, but consequential typo in $\hat{\theta}_{1}$. This typo makes it v difficult to determine whether $\hat{\theta}_{2}$ or $\hat{\theta}_{3}$ has a smaller MSE for $n=4$. Here is the correct version:

$$
\begin{gathered}
{\left[\hat{\theta}_{1}=\frac{0.3}{n} \sum_{i=1}^{n} \frac{1}{X_{i}}, \hat{\theta}_{2}=E\left[\hat{\theta}_{1}\right] \sum_{i=1}^{n} x_{i}\right]} \\
\hat{\theta}_{3}=\frac{4 n}{\sum_{i=1}^{n} x_{i}}
\end{gathered}
$$

Q) What is $\hat{\theta}_{2}$? How is t random? Recall some former HW problems:

HW 2\#3
Giver joint density: $\quad f(x, y)=\frac{6}{7}(x+y)^{2} \mathbb{I}\{0 \leq x \leq\} \mathbb{I}\{0 \leq y \leq 1\}$ Find $E[Y \mid X=x]$

HW3 \#1 for $T=\sum_{i=1}^{N} x_{i}$ wi x_{i} all ID I

$$
E[T / N=n]=N E[X]
$$

and

$$
E[E(T \mid N=n)]=E(N) E(X)
$$

Midsemester Adjustments
43% response rate

- OH Th switch to M 4-5pm
- Must visit oft by end of Unit 2 to be elligible for full participation grade.
- Move in-class examples
- No mare than 2 Hw/ wk somewhat shortened assignments
- opportunity to redo a quiz for partial credit

Topic Hypothesis Testing Part II (ch. 93.0 .9 .4)
Setting: $\quad x_{\text {obs }}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$H_{0}=\left\{\begin{array}{l}\text { a statement/hypothesis concerning the } \\ \text { dist bin of }\left(X_{1}, \ldots, X_{n}\right)\end{array}\right.$
$(H, \propto) H_{A}=\left\{\begin{array}{l}\text { a different statement/hypothesis concerning } \\ \text { the distbin of }\left(X_{1}, \ldots, X_{n}\right)\end{array}\right.$
Typically, we also assume

$$
\left(X_{1}, \ldots, X_{n}\right) \text { III } f(x ; \theta)
$$

So the likelihood for θ given x obs is:

$$
L(\theta)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \text { or } l(\theta)=\sum_{i=1}^{n} \ln \left(f\left(x_{i} ; \theta\right)\right)
$$

Therefore, we are often interested in hypotheses about the value of θ.

$$
\left\{\begin{array}{l}
H_{0}: \theta=\theta_{0} \\
H_{1}: \theta=\theta_{1}
\end{array}\right.
$$

To conduct a "level α " hypothesis test we need

1) A test statistic
re. a function of the dater, say, $T(\underset{\text { x }}{ }$)
2) A rejection rule
ie some $A_{2}=\{\underline{\sim}: T(\underline{x})$ behaves some atypical way $\}$

A popular choice of test statistic is the ratio of the likelihoods specified by H_{0} \& H_{1} :
The Likelihood ratio (LHR) is the ratio

$$
A\left(\theta_{1} x \cdot b s\right)=A=\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}
$$

F/V this is
the Erect "Capital "lambda"
Q) When is 1 large? What does $1=1$ mean about Ho \& Ht? what is the smaviest/largest possible value for A ?

Now, the idea is to define a rejection regicin (ar rule) so that
$\left\{\begin{array}{l}\text { we reject Ho in favor of } H_{1} \\ \text { only if } T\left(X_{0 b s}\right) \text { is improbable } \\ \text { if we assume } H_{0} \text { is correct. }\end{array}\right.$
Ie. $A_{\alpha}= \begin{cases}x: & T\left(x_{0} b s\right) \text { occurs w low probability } \\ \sim & \text { under the assumption that } \\ \text { Ho is correct. }\end{cases}$
correspardingly, a p-value is
$\operatorname{Pr}\left(\begin{array}{l}T(X) \text { is } T(\chi o b s) \text { ar anything less } \\ \text { likely than } T \text { (朱s) under the } \\ \text { assumption that Ho is correct }\end{array}\right)$
Recall our example from before:
$\left.E_{x}\right) \delta_{a n} X_{1}, \ldots, X_{n}$ ID $N\left(\mu, 0.4^{2}\right)$
Test Ho: $\mu=37$
Case 1: $n=16$
us $H_{i}: \mu=36.9$
Case 2: $n=64$

- If $\alpha=0.025$, how does increasing n change the power of the test?
- How does changing 2 impact the power of the test?
Q) How do we choose the direction in A_{α} ?
A) $A_{\alpha}=\left\{x_{0} \frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}<C_{\alpha}\right\}$
which can often be simplified into statements about a sufficient stat, $T(x) \geqslant K_{2}$.

Ex canted) say X_{1}, \ldots, x_{n} IiI) $N\left(\mu, 0.4^{2}\right)$
Test Ho" $\mu=37$
Case 1: $n=16$
us $H_{1}: \mu=36.9$
Case 2: $n=64$

Suppose we change H_{1} to $H_{1}: \mu=36$ and fix $\alpha=0.025$.

- What is T(X)?
- What does "atypical" mean in this context?
- What is A_{d} for $n=16^{2} \quad$ For $n=64^{2}$.

$$
\begin{gathered}
X \sim \text { Ho }_{\sim}\left(37, \frac{0.4^{2}}{16}\right) \\
A_{\alpha d}=\{x: \bar{X}<c\} \\
\\
\operatorname{Pr}(\text { Reject (to } / \text { Ho is correct) } \\
=0.025
\end{gathered}
$$

In short: changing the value of μ in H_{1} doesn't change the rejection region (s) A_{α} at all
note:
In testing some hypothesis, there is opportunity for creative choices of the test statistic, $T(\underset{\sim}{x})$ and also for the rejection region, A_{α}.

When comparing different tests of the same hypotheses, if both tests have the same significance (level, then the test w/ the highest power is preferable.
(NP)
The Neyman-Dearsan Lemma for Most Powerful Tests

For a test of two simple hypotheses, the LHR test is at least as powerful as any other test $w /$ the same (or more restrictive-smaller) α.
le. The most powerful test of $H_{0} \therefore \theta=\theta_{0}$ vs $H_{1} \theta=\theta_{i}$ is the test w/

$$
T(\underset{\sim}{x})=\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}=\frac{f\left(X_{1}, X_{2}, \ldots, X_{n} ; \theta_{0}\right)}{f\left(X_{1}, X_{2}, \ldots, X_{n} ; \theta_{1}\right)}
$$

and rejection region

$$
A_{\alpha}=\left\{x \cdot \frac{L\left(\theta_{0}\right)}{L\left(\theta_{0}\right)}<c_{\alpha}\right\}
$$

where C_{α} is chosen so that

$$
\operatorname{Pr}\left(\left.\frac{L\left(\theta_{0}\right)}{L\left(\theta_{0}\right)}<C_{\alpha} \right\rvert\, H_{0} \text { s correct }\right)=\alpha .
$$

Recall:
The likelihood function for $\left(x_{1}, \ldots, x_{n}\right)$ is

$$
L(\theta)=f\left(x_{1}, \ldots, x_{n} ; \theta\right) .
$$

So, for any value of $\theta, L(\theta)$ is the proloakility of observing a particular set of data, $\left(x_{1}, \ldots, x_{n}\right)$.
But for an observed data set, $\left(x_{1}, \ldots, x_{n}\right), L(\theta)$ is a deterministic function of the possible values for θ.

Proof of NP Lemma:
Define $y=\mathbb{I}\left\{x \in A_{\alpha}\right\}$ and $y^{*}=\mathbb{I}\left\{x \in H_{\alpha}\right\}$ where $\alpha^{*} \leq \alpha$, where $X=\left(X_{1}, \ldots, X_{n}\right)$.
Note that $E\left[Y \mid H_{0}\right]=\operatorname{Pr}\left(Y=1 \mid H_{0}\right)=\alpha$
and $E\left[Y \mid H_{1}\right]=\operatorname{Pr}\left(Y=1 \mid H_{1}\right)=1-\beta$ (ie. the power).
And since $\alpha^{*} \leq \alpha, E\left[y^{*} \mid H_{0}\right]=\alpha^{*} \leq \alpha$.
It remains to show that $E\left[Y \mid H_{1}\right] \geqslant E\left[Y^{*} \mid H_{1}\right]$. For observed data $\chi=\left(x_{1}, \ldots, x_{n}\right)$, write the corresponding observed values of y and y^{*} by y and y^{*}, respectively:
Note $y^{*}\left[c_{\alpha} f\left(x ; \theta_{1}\right)-f\left(x_{1} \theta_{0}\right)\right] \leqslant y\left[c_{\alpha} f\left(x ; \theta_{1}\right)-f\left(x_{;} ; \theta_{0}\right)\right]$.
|| to see this consider the case where $y=1, y^{*}=0$:
Since $y=1, \frac{L\left(\theta_{0}\right)}{U\left(\theta_{1}\right)}<c_{\alpha}$, ie $0<c_{\alpha} f\left(x_{j} \theta_{1}\right)-f\left(x_{\alpha}, \theta_{0}\right)$
Next, consider the case where $y=0, y^{*}=1$:
Here; $y=0$ means $c_{2} f\left(x_{x} ; \theta_{1}\right)-f\left(x ; \theta_{0}\right) \leq 0$.
Thus, multiplying both sides of the inequality by $f(x ; \theta)$ and integrating w.r.t. x yields

$$
C_{\alpha} E\left[Y^{*} \mid \theta_{1}\right]-E\left[Y^{*} \mid \theta_{0}\right] \leqslant c_{\alpha} E\left[Y \mid \theta_{1}\right]-E\left[Y \mid \theta_{0}\right]
$$

which can be rearranged so that

$$
E\left[y \mid \theta_{0}\right]-E\left[y^{*} \mid \theta_{0}\right] \leqslant C_{\alpha}\left(E\left[y \mid \theta_{1}\right]-E\left[Y^{*} \mid \theta_{1}\right]\right)
$$

where the LHS is $\alpha-\alpha^{*} \geqslant 0$.
Hence, $E\left[Y \mid \theta_{1}\right]-E\left[Y^{*} \mid \theta_{1}\right] \geqslant 0$.

Uniformly Most Powerful (LMMP) 1 -sided tests
For simple hypotheses $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta=\theta_{1}$, the rejection region, A_{α}, depends on the $\operatorname{sign}(t /-)$ of the difference $\theta_{0}-\theta_{1}$.
For a given α-level, the rejection region for this test stays the same for any $\theta_{1}<\theta_{0}$. Every value far θ_{1} that remains on the same side of θ_{0} has the same most powerful test by the NP lemma. Therefore, the LRT is uniformly most powerful for tests of composite alternatives: $H_{0}: \theta=\theta_{0}$ us. $H_{1}: \theta<\theta_{0}$

$$
\left({ }^{\circ} H_{1}^{\prime} \cdot \theta>\theta_{0}\right)
$$

Q) Is there a UMP test for a two sided H?
unfortunately, no!
A test of $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta \neq \theta_{0}$ allows for differences from θ_{0} in either direction.
We can define the rejection region for this test as the union of rejection regions for each one-sided test at an $\alpha / 2$-level of significance.
But, either of these 1-sided tests will have greater power for certain values in the parameter space, Θ.

Ex）Suppose X_{1}, \ldots, X_{n} IT $N(\theta, 1)$ and test $H_{0}: \theta=\theta_{0}$ vs，$H_{A} \theta=\theta_{i}$ ，at $\alpha=0: 05$ level．
1 －parameter exponential family！$\Rightarrow T(x)=\bar{x}$
Furthermore，$T(\underline{x}) \sim N\left(\theta, \frac{1}{n}\right)$ is a sufficient stat for θ

$$
\begin{aligned}
& L(\theta)=f(\underset{\sim}{x} ; \theta)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(x_{i}-\theta\right)^{2}\right\} \\
& =\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}\right\} \\
& \Lambda=\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}=\frac{\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\theta_{0}\right)^{2}\right\}}{\left(\frac{1}{1 \pi}\right)^{n} \exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\theta_{1}\right)^{2}\right\}} \\
& =\exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\theta_{0}\right)^{2}-\left(-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\theta_{i}\right)^{2}\right)\right\} \\
& =\exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(\left(x_{i}-\theta_{0}\right)^{2}-\left(x_{i}-\theta_{1}\right)^{2}\right)\right\} \\
& \text { 世立 } \\
& =\exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}+\left(\bar{x}-\theta_{2}\right)^{2}-\frac{\left(x_{i}-\bar{x}\right)}{A}+\frac{x-\theta_{1}}{A^{\prime}}\right)^{\prime}\right]\right\} \\
& =\exp \left\{\frac { 1 } { 2 } \sum _ { i = 1 } ^ { n } \left[\left(x_{i}-\bar{x}\right)^{2}+2\left(x_{i}-\bar{x}\right)\left(\bar{x}-\theta_{0}\right)+\left(\bar{x}-\theta_{0}\right)^{2}\right.\right. \\
& \left.-\left[\left(x_{i}-\bar{x}\right)^{2}+2\left(x_{i}-\bar{x}\right)\left(\bar{x}-\theta_{1}\right)+\left(\bar{x}-\theta_{1}\right)^{2}\right]\right\} \\
& =a \cdot \exp \left\{n \bar{X}\left(\theta_{0}-\theta_{1}\right)+\frac{n}{2}\left(\theta^{2}-\theta_{0}^{2}\right)\right\}
\end{aligned}
$$

Supplemental notes for $10-19-22$
(Note: lencarage you to try this out on) your own before racing the son.)
(*) To see how we get this final expression consider:

$$
\begin{aligned}
& \sum\left(x_{i}-\theta_{0}\right)^{2}= \sum\left(x_{i}-\bar{x}+\bar{x}-\theta_{0}\right)^{2} \\
&= \sum\left[\left(x_{i}-\bar{x}\right)^{2}+\left(\bar{x}-\theta_{0}\right)^{2}+2\left(x_{i}-\bar{x}\right)\left(\bar{x}-\theta_{0}\right)\right] \\
&= \sum_{i=1}^{n}\left[\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}^{2}\right)+\left(\bar{x}^{2}-2 \theta_{0} \bar{x}+\theta_{0}^{2}\right)+\left(2 x_{i}-2 \bar{x}\right)\left(\bar{x}-\theta_{0}\right)\right] \\
&=\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}^{2}+\bar{x}^{2}-2 \theta_{0} \bar{x}+\theta_{0}^{2}+2 x_{i} \bar{x}-2 \bar{x}^{2}-2 \theta_{0} x_{i}+2 \theta_{0} \bar{x}\right) \\
&= \sum x_{i}^{2}-2 n \bar{x}^{2}+n \bar{x}^{2}+n \bar{x}^{2}-2 n \theta_{0} \bar{x}+n \theta_{0}^{2}+2 n \bar{x}^{2} \\
&= \sum x_{i}^{2}-2 n \theta_{0} \bar{x}+n \theta_{0}^{2}
\end{aligned}
$$

Similarly, for $\left(x_{i}-\theta_{1}\right)^{2}$ we have:

$$
\sum\left(x_{1}-\theta_{1}\right)^{2}=\sum x_{1}^{2}-2 n \theta \theta_{1}+n \theta_{1}^{2}
$$

And therefore,

$$
\Sigma\left(x_{i}-\theta_{0}\right)^{2}-\Sigma\left(x_{i}-\theta_{1}\right)^{2}=2 n \bar{X}\left(\theta_{1}-\theta_{0}\right)+n\left(\theta_{1}^{2}-\theta_{0}^{2}\right)
$$

Duality of Confidence lintervals and
Hypothesis Tests
Recall $A_{\alpha}=\left\{x: T(x)\right.$ is unusual enough under $\left.H_{0}\right\}$
represents the subset of the joint sample space, X, for all values of $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that we reject $H_{0}: \theta=\theta_{0}$ at the level α.

All other possible values of x lie in what we call the "acceptance region",

$$
A\left(\theta_{0}\right)=\left\{\underset{\sim}{x}: \underset{\sim}{x} \notin A_{\alpha}\right\},
$$

that is, the subset of X for which un would fail to reject $H_{0}: \theta=\theta_{0}$ at the level α_{0}

Ex) For X_{1}, \ldots, X_{n}. $i i n(\theta, 1)$ if we test $H_{0}: \theta=\theta_{0}$ is $H_{1}, \theta>\theta_{0}$ at the α-level and reject for $X \in A_{\alpha}=\left\{X: \bar{X}-\theta_{0}>C_{\alpha}\right\}$ where C_{α} is the quartile

Then we fail to reject Ho when $\bar{x}-0<1<h(x) /-\sqrt{n}$识 $\bar{x}-8(A) / \sqrt{n}<\theta_{0}$

Hance $A\left(\theta_{0}\right)=\left\{x: \bar{x}-g(A) / \sqrt{n}<\theta_{0}\right\}$.

Setting:
Formally, let θ be a parameter for a family of probability dustbins and denote the set of all possible values of θ be the parameter space, Let $\underset{\sim}{X}=\left(x_{1}, \ldots, x_{n}\right)$ be the randan vector of data.

Theorem: From Tests to Confidence Resians If for every value of $\theta_{0} \in \Theta$ there is a level- α hypothesis test of $H_{0}: \theta=\theta_{0}$ wi corresponding acceptance region, $A\left(\theta_{0}\right)$,
Then, the set $C(X)=\{\theta: X \in \mathbb{\sim}(\theta)\}$ is a $(1-\alpha) \times 100 \%$ confidence region for θ.
Proof:
For A to be the acceptance region of a level- α test means $\operatorname{Pr}\left(\underset{\sim}{X} \in A\left(\theta_{0}\right) \mid \theta=\theta_{0}\right)=1-\alpha$.
So, $\operatorname{Pr}\left(\theta_{0} \in C(X) \mid \theta=\theta_{0}\right)=\operatorname{Pr}\left(X \in A\left(\theta_{0}\right) \mid \theta=\theta_{0}\right)=1-\alpha$ by definition of $C(D)$.

Main Idea
A (1-d) $\times 100 \%$ conf region for θ consists of all those values of $\theta_{0} \in \Theta$ for which the hypothesis $H_{0} \theta=\theta_{0}$ will Not be rejected at level α.

Theorem: From Confidence Regions to Tests
If $C\left(x_{x}\right)$ is a $(1-2) \pi 100 \%$ confidence region for θ; Le. for every $\theta_{0}, \operatorname{Pr}\left(\theta_{0} \in C(X) \mid \theta=\theta_{0}\right)=1-\alpha$.
Then an acceptance region far a test at level α of the hypothesis $H_{0} \theta=\theta_{0}$ is

$$
A\left(\theta_{0}\right)=\left\{x_{\sim}^{x}: \theta_{0} \in C(X)\right\}
$$

Proof:
If $C(X)$ is such that $\operatorname{Pr}\left(\theta_{0} \in C(X) \mid \theta=\theta_{0}\right)=1-\alpha$, then the test of $H \therefore \theta=\theta_{0}$ has level α because

$$
\operatorname{Pr}\left(X \in \mathbb{A}\left(\theta_{0}\right) \mid \theta=\theta_{0}\right)=\operatorname{Pr}\left(\theta_{0} \in C(X) \mid \theta=\theta_{0}\right)=1-\alpha
$$

Main Idea
The hypothesis $H_{0}: \theta=\theta_{0}$ is Not rejected if θ o lies in the confidence region for θ.

Hint: Pause 6 ask yevirself - what is random?

$$
\begin{aligned}
& X \text {-random } \quad \theta \text {-unknown } \\
& x \text { - observed/ fixed } \\
& \theta_{0}, \theta_{1} \text { - fixed }
\end{aligned}
$$

Worksheet practice.

Stat 61 In-Class Worksheet

Original group members:

$$
L(\mu)=\prod_{i=1}^{n}\left(\frac{1}{\sqrt{2+1+0.16}}\right) \exp \left\{-\frac{\left(x_{i}-\mu\right)^{2}}{2 \cdot 0.16}\right\}=(\text { cost })^{n} \cdot \exp \left\{-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2(0.16)}\right\}
$$

Suppose we observe X_{1}, \ldots, X_{n} IID data points from a $N\left(\mu, 0.4^{2}\right)$ distribution where $n=16$ and we wish to test $H_{0}: \mu=37$.

1. For a simple alternative, $H_{1}: \mu=36.8$ with $\alpha=0.025$, what is the rejection region A_{α} ? What is the power of this test?

So the rejection region s :

$$
\begin{aligned}
& A_{\alpha}=\left\{x: \exp \{2(0.2) n \bar{x}\}_{x} \text { cost } \angle C C_{\alpha}\right\} \\
& \left.\Leftrightarrow\left\{x: n \cdot 0.4 \cdot \bar{x}<C_{\alpha}^{\prime \prime}\right\}_{\text {(where }} c_{\alpha}^{\prime \prime}=\ln \left(k^{\prime} \alpha(\operatorname{lom} x)\right)\right\}
\end{aligned}
$$

power $=\operatorname{Pr}(\bar{x}<36.8 \mid \mu=36.8)=0.5$
2. How does the rejection region change if we increase n to $n=64$ but keep everything else the same?

$$
A_{d} \text { will be more broad w/ } n=64
$$

that it is wi $n=16$.
3. How would the power change if we decreased α but kept everything else the same?

$$
\text { Decreasing } \alpha \text { will decrease the power }
$$

4. How would A_{α} change if we instead tested against $H_{1}: \mu=36$?

$$
A_{\alpha} \text { doesn't change at all }
$$

The Neyman-Pearson lemma implies that, for testing $H_{0}: \mu=\mu_{0}$ vs $H_{1}: \mu=\mu_{1}$ with $\mu_{1}<\mu_{0}$, the test that rejects for $\bar{X}<c_{\alpha}$ is most powerful of all tests with comparable α.
5. Is the test in (1) above uniformly most powerful for any pair of hypotheses? If so which ones and why? Yes, is UMP for $\left\{\begin{array}{l}H_{0}: \mu=\mu_{0} \\ H_{1}: \mu<\mu_{0}\end{array}\right.$ since both the test stat.

- Rej. Req. remain unchanged os MP by N-Plemmg for any other $\mu_{1}<\mu_{0}$

6. For the test in (1) above, suppose you observe data where $\bar{x}_{\text {obs }}=36.85$. What is the p -value for this

$$
\begin{aligned}
& \text { one-sided test? (Ide. what is the smallest } \alpha \text { level that would lead to rejecting } H_{0} \text { ?) } \\
& p \text {-val }=\operatorname{Pr}\left(\Lambda \leq-\Lambda \text { obs } \mid H_{0}: \mu=37\right) \\
& \Lambda=\text { cost } x \exp \{2 \bar{x} \bar{x}(37-36.8)\} \\
& =\operatorname{Pr}\left(\bar{X} \leq \bar{X}_{\text {obs }} \mid H_{0}: \mu=37\right) \\
& \Lambda_{\text {obs }}=\text { cant } x \exp \{2 n .36 .95(37-36.8)\} \\
& =\operatorname{Pr}(\bar{X} \leq 36.85 / \mu=37) \\
& \text { In general: } \operatorname{p-va|}=\operatorname{Pr}\left(\Lambda \leq-\Lambda_{\text {os }} \mid \|_{0}: \theta==_{0}\right) \\
& =\operatorname{prorm}(36.85, \text { mean }=37, \text { sd }=0.1, \text { lower.tail }=T)
\end{aligned}
$$

7. For testing $H_{0}: \mu=\mu_{0}$ vs $H_{1}: \mu<\mu_{0}$ at an $\alpha=0.025$ level, if we observe $\bar{x}_{\text {obs }}=36.85(n=16)$, what are the range of μ_{0} values that would NOT be rejected? (I.e. find a one-sided confidence interval for μ.)

we must find which other μ_{0} values satisfy: $0.025=\operatorname{Pr}\left(\bar{X}<36.8 \mid H_{0} ; \mu=\mu_{0}\right)$. Since

$$
\begin{aligned}
0.025 & =\operatorname{Pr}\left(\bar{X}-\mu_{0}<36.8-\mu_{0} \mid H_{0}: \mu=\mu_{0}\right) \\
& =\operatorname{Pr}\left(\left.\frac{\bar{X}-\mu_{0}}{0.1}<\frac{36.8-\mu_{0}}{0.1} \right\rvert\, H_{0}: \mu=\mu_{0}\right) \\
& =\operatorname{Pr}\left(z<\frac{36.8-\mu_{0}}{0.1}\right)
\end{aligned}
$$

We have that $P_{6}\left(\frac{\bar{X}-\mu_{0}}{0.1} \leq \operatorname{lf}_{(0.025)}\right)=0.025$ if Ho is true.
10. $\mu_{0} \geq \bar{x}-0.1$ h(0.025) is a 1 -sided 97.5% (I for μ.

Topic: Hyp po thesis Testing Part III
Recap
Simple Ho vs simple H_{1}
The N-P lemma concludes that for testing $\left\{\begin{array}{l}H_{0}: \theta=\theta_{0}, \theta_{0} \neq \theta_{1} \\ H_{1}: \theta=\theta_{1},\end{array}\right.$ the most powerful level-a test is the likelihood ratio test,
Test statistic: $\Lambda=\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}$ where $L(\theta)=f\left(\left(X_{1}, \ldots, y x_{n}\right) ; \theta\right)$
is the likelihood for θ.
Rejection Region: $A_{\alpha}=\left\{\chi: \frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}<C_{\alpha}\right\}$
where C_{α} is such that $\operatorname{Pr}\left(\underset{\sim}{X} \in A_{\alpha} \mid H_{0}: \theta=\theta_{0}\right)=\alpha$
Error Probabilities:

$$
\begin{aligned}
& \text { cobabilities: } \\
& \alpha=\operatorname{Pr}(\operatorname{Type} I \text { error })=\operatorname{Pr}\left(\left.\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}<C_{\alpha} \right\rvert\, H_{0}: \theta=\theta_{0}\right)=\alpha \\
& \beta=\operatorname{Pr}(\operatorname{Type} I \operatorname{errar})=\operatorname{Pr}\left(\left.\frac{L\left(\theta_{0}\right)}{L\left(\theta_{1}\right)}>C_{\alpha} \right\rvert\, H_{1}: \theta=\theta_{1}\right) \\
& x \notin A_{\alpha}
\end{aligned}
$$

Thus, power $=1-\beta=\operatorname{Pr}\left(\underline{X} A_{\alpha} \mid H_{1}: \theta=\theta_{1}\right) \quad X \notin A_{\alpha}$
Finally, a p-value is a summary of the strength of evidence against Ho:

$$
\begin{aligned}
& p \text {-value }=\left\{\left.\begin{array}{l}
p_{r}\left(\Lambda>\Lambda_{\text {ob }} \mid t_{0} \theta=\theta_{0}\right), \text { if } \theta_{1}>\theta_{0} \\
\operatorname{Pr}\left(\Lambda<\Lambda-\ln \mid \theta_{0} \theta=0_{0}\right), \text { if } \theta_{1}<\theta_{0}
\end{array} \right\rvert\,\right.
\end{aligned}
$$

In general:

$$
p-\text { val }=\operatorname{Pr}\left(\Lambda \leqslant-L_{\text {obs }} \mid H_{0}: \theta=\theta_{0}\right)
$$

Simple Ho us Composite H_{1}
1)

Since A_{α} does not change for any other value of θ_{1}^{\prime} that lies an the same side of θ_{0} as $\theta_{\text {, }}$, in the tests of simple H_{0} us simple H_{1}, the uniformly most powerful test of $\left\{\begin{array}{l}H_{0}: \theta=\theta_{0} \\ H_{1}: \theta>\theta_{0}\end{array}\right.$ or $\left\{\begin{array}{l}H_{0}: \theta=\theta_{0} \\ H_{1}: \theta<\theta_{0}\end{array}\right.$ is the likelihood ratio test.
As before,

$$
\left.\alpha=\operatorname{Pr}(\text { Type } I \text { error })=\operatorname{Pr}\left(X \in A_{\alpha}\right) H_{0}: \theta=\theta_{0}\right)
$$

But β and the power may vary for different parameter values in H_{1} :
eg.

$$
\begin{aligned}
\beta=\operatorname{Pr}\left(\text { Type } \mathbb{I}_{\text {error }}\right) & =\operatorname{Pr}\left(\underset{\sim}{X} \notin A_{\alpha} \mid H_{1}: \theta>\theta_{0}\right) \\
\text { power } & =\operatorname{Pr}\left(X \in A_{\alpha} \mid H_{1}: \theta>\theta_{0}\right)
\end{aligned}
$$

2)

For a two-sided alternative $\left\{\begin{array}{l}H_{0}: \theta=\theta_{0} \\ H_{1}: \theta \neq \theta_{0}\end{array}\right.$ there no uniformly mort powerful test.
However, we can derive a level- α test by finding $A_{\alpha / 2} \cup A_{\alpha / 2}^{\prime}$, where $A_{1 / 2}$ is the level $-\alpha / 2$ RR for $\left\{\begin{array}{l}H_{0}: \theta=\theta_{0} \\ H_{1}: \theta>\theta_{0}\end{array}\right.$ and A_{α}^{2} is the level $-\frac{\alpha}{2} R R$ for $\left\{\begin{array}{l}H_{0}: \theta=\theta_{0} \\ H_{1}: \theta<\theta_{0}\end{array}\right.$

Confidence Intervals
For significance level $\alpha \in(0,1)$, we call $(1-\alpha)$ the "confidence level".
Given data $\left(X_{1}, \ldots, x_{n}\right) \sim f\left(\left(x_{1}, \ldots, x_{n}\right) ; \theta\right)$,
a say) 95% confidence interval (CI) is a random interval that contains the value of θ that is associated w) the observed date, X obs, 95% of the time.
$\left(\begin{array}{l}\text { Ingeneral, the same is not true for Bayesian } \\ \text { credible intervals. }\end{array}\right.$

1-Sided CIs
A 1 -sided $(1-\alpha) 100 \%$ CI for θ has one fixed bound (usually $\pm \infty$ or (0) and one random bound. One way to create a 1-sided (1- $\alpha) 100 \%$ CI for θ is to invert a level- 1 -sided byouthesis test.
If A_{α} is the rejection region for this level- α hypothesis test, then the set of all θ o values that would NOT be rejected for the observed data, Kobs, forms a (1-d) 100% CI for θ.

2-Sided CIs
The intersection of two 1 -sided $\left(1-\frac{\alpha}{2}\right) 100 \%$ CIs 2 forms a $(1-\alpha) 100 \%$ CI.

The two 1 -sided intervals imply a random upper and lower bound, C_{u} and C_{c} such that

$$
\operatorname{Pr}\left(C_{u}>\theta\right)=\operatorname{Pr}\left(C_{L}<\theta\right)=\frac{\alpha}{2}
$$

Assuming $C_{u}>C_{L}$, the intersection is non-empty and we have

$$
\operatorname{Pr}\left(C_{L}<\theta \leqslant C_{u}\right)=\operatorname{Pr}\left(C_{n} \leq \theta\right)-\operatorname{Pr}\left(C_{L}<\theta\right)=1-\frac{\alpha}{2}-\frac{\alpha}{2}=1-\alpha .
$$

Note
To construct a $2-$ sided ($1-\alpha$) 100% CI, first construct two 1 -sided $\left(1-\frac{\alpha}{2}\right) 100 \%$ (Is and then find their intersection. Although this may not yield the narrowest possible interval wi the desired coverage rate, this method does ensure that, in the case where the interval fails to contain the true value of θ, it is equally likely that it missed high or missed low, which is a desirable property for an interval estimate.

Generalized LHR Test
For composite H_{1}, we can use a general version of the $L I R$ test where the test statistic is now

$$
\Omega=\frac{\max _{\theta \in \omega_{0}} L(\theta)}{\max _{\theta \in \Omega} L(\theta)} \quad \begin{aligned}
& \text { read as of the max } \\
& \text { value of the } \\
& \text { likelihood fer all } \\
& \theta \in \omega_{0}
\end{aligned}
$$

where $\Omega=\Theta$ is the entire parameter space and
$\omega_{0} \leq \Theta$ is the subspace specified by H_{0}, and the rejection region, A_{α}, consists of small values of A.

Recall, $\hat{\theta}_{\text {OLE }}$ is the maximizer of $L(\theta)$ for $\theta \in \Omega$.
Ex X_{1}, \ldots, X_{n} III $N\left(\mu, 0.4^{2}\right)$ test $\left\{\begin{array}{l}H_{0}: \mu=37 \\ H_{1}: \mu \neq 37 \text { at level. }\end{array}\right.$ First, $L(\theta) \mathcal{e} \exp \left\{-\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{2(0,16)}\right\}$ and

$$
\left[\begin{array}{l}
\Omega=(-\infty, \infty) \quad \text { and } \dot{\mu}_{m \in E}=\bar{X} \\
\omega_{0}=\{37\}
\end{array}\right.
$$

Then we have $\Lambda=\exp \left\{-\frac{1}{2(0.16)}\left[\sum_{i=1}^{n}\left(x_{i}-37\right)^{2}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{j}\right]\right\}$ and $A_{\alpha}=\left\{\underline{x} 01<c_{1}\right\} \equiv\left\{\underline{x}: \sum_{i=1}^{n}\left(x_{i}-37\right)^{2}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>c_{2}\right\}$ where c_{2} is such that $\operatorname{Pr}\left(\sum_{i=1}^{n}\left(x_{1}-37\right)^{2}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>c_{2} \mid H_{0} ; \mu=37\right)=\alpha_{0}$.

Theorem: Asymptotic Dustbin of the Gen- LHR
Provided the joint density (or mass) function $f\left(\left(x_{1}, \ldots, x_{n}\right) ; \theta\right)$ is "smooth enough",

$$
-2 \ln (1) \stackrel{H_{0}}{=} X^{2}(m) \text { as } n \rightarrow \infty
$$

where $m=\operatorname{Dim}(\Omega)-\operatorname{Dim}\left(\omega_{0}\right)$.

Useful Identity : $\sum_{i=1}^{n}\left(X_{i}-\mu_{0}\right)^{2}=\left(\sum_{i=1}^{n}\left(X_{i}-\bar{x}\right)^{2}\right)+n\left(\bar{x}-\mu_{0}\right)^{2}$
Proof: See supplementary material for 10-19-22.
Ex (cont d)

$$
\begin{aligned}
A_{\alpha} & =\left\{x: \sum_{i=1}^{n}\left(x_{i}-37\right)^{2}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>c_{2}\right\} \\
& =\left\{x: \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-37)^{2}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>c_{2}\right\} \\
& =\left\{x \operatorname{in}(\bar{x}-37)^{2}>c_{2}\right\} \equiv\left\{x: \frac{(\bar{x}-37)^{2}}{\left(e_{1} 16\right.}>c_{3}\right\}
\end{aligned}
$$

Recall, if $\bar{X} \sim N\left(\mu ; \frac{\sigma^{2}}{r}\right)$ there $\frac{(\bar{x}-\mu)}{(\sigma / \bar{n})} \sim N(0,1)$ and so

$$
\begin{aligned}
& \frac{(\bar{x}-\mu)^{2}}{\left(\frac{v^{2}}{n}\right)} \sim \chi_{(i)}^{2} \\
& \because \quad c_{3}=q \operatorname{chisq}(1-\alpha, \text { of }=1, \text { loweritail }=T)
\end{aligned}
$$

- Review Worksheet Solutions

Note: For two-sided H_{1}, we will use the generalized LHR test.
$\frac{\text { Ex:Two-Sided Test }}{\text { Suppose } x \sim \operatorname{Bin}(n, p)}$ and test $\left\{\begin{array}{l}H_{0}: p=\frac{1}{2} \\ H_{1}: p \neq \frac{1}{2}\end{array}\right.$ at an $\alpha=0.05$ significance level. Suppose $n=10$.
First note that $L(p)=\binom{n}{x} p^{x}(1-p)^{n-x}$ and that $\quad \hat{P}_{\mu C E}=\frac{x}{n}, A l s 0, \Omega=[0,1]$ and $\omega_{0}=\left\{\frac{1}{2}\right\}$.
Our test statistic is

$$
\begin{aligned}
L=\frac{\max _{p \in\left(\frac{1}{2}\right)} L(p)}{\max _{p \in \Omega} L(p)}=\frac{L\left(\frac{1}{2}\right)}{L\left(\frac{x}{n}\right)} & =\frac{\left(\frac{n}{x}\right) \frac{1}{2} x\left(1-\frac{1}{2}\right)^{n-x}}{\binom{n}{x}\left(\frac{x}{n}\right)^{x}\left(1-\frac{x}{n}\right)^{n-x}} \\
& =\cdots=\left(\frac{n}{2 x}\right)^{x}\left(\frac{n}{2(n-x)}\right)^{n-x}
\end{aligned}
$$

and our rejection region is

$$
A_{\alpha}=\left\{x:\left(\frac{n}{2 x}\right)^{x}\left(\frac{n}{2(n-x)}\right)^{n-x}<c_{\alpha}\right\}
$$

where c_{α} satisfies $P_{\sigma}\left(\left(\frac{n}{2 x}\right)^{x}\left(\frac{n}{2(n-x)^{n-x}}<C_{\alpha}\right) P=y_{2}\right)=0.05$
三 there's work you must show

To solve for an explicit rejection region note that

$$
\Lambda=\left(\frac{n}{2 x}\right)^{x}\left(\frac{n}{2(n-x)}\right)^{n-x}=\ldots=\left(\frac{n}{2}\right)^{n} \frac{1}{x^{x}(n-x)^{n-x}}
$$

So

$$
\begin{aligned}
A_{\alpha} & =\left\{x:\left(\frac{n}{2 x}\right)^{x}\left(\frac{n}{2(n-x)}\right)^{n-x}<c_{\alpha}\right\} \\
& \equiv\left\{x: \frac{1}{x^{x}(n-x)^{n-x}}<c_{\alpha}^{\prime}\right\} \\
& =\left\{x: \ln (x)-[x \ln (x)+(n-x) \ln (n-x)]<c_{\alpha}^{\prime}\right\} \\
& \left.=\{x: x \ln (x)+\ln -x) \ln (n-x)>c_{\alpha}^{\prime \prime}\right\}
\end{aligned}
$$

$$
A_{2} \equiv\left\{x:\left|x-\frac{n}{2}\right|>k_{\alpha}\right\}
$$

plot this!

Takeaway:
$\left(\frac{n}{2 x}\right)^{x}\left(\frac{n}{2(n-x)}\right)^{n-x}$ is small when x is for fran $\frac{n}{2}$

Now we can explicitly solve for an $\alpha=0,05$ rejection region:

$$
\begin{aligned}
0.05 & =\operatorname{Pr}\left(\left.\left|x-\frac{n}{2}\right|>k \right\rvert\, H_{0} p=r_{2}\right) \\
& =\operatorname{Pr}\left(x-\frac{n}{2}>k \text { or } \left.x-\frac{n}{2}<-k \right\rvert\, H_{0}: \rho=\frac{1}{2}\right) \\
& =\operatorname{Pr}\left(\left.x>k+\frac{n}{2} \right\rvert\, p=r_{2}\right)+\operatorname{Pr}\left(x<\frac{n}{2}-\left.k\right|_{p=1 / 2}\right)
\end{aligned}
$$

Which implies

$$
\left\{\begin{array}{l}
k+\frac{n}{2}=q \text { birom }\left(1-\frac{0.05}{2}, n=10, p=12, \text { lowertail }=T\right) \\
\frac{n}{2}-k=q \text { biro }\left(\frac{0.05}{2}, n=10, p=1 / 2, \text { lower. tail }=T\right)
\end{array}\right.
$$

le. $k=3$, And finally,

$$
A_{\alpha}=\left\{x:\left(\left.x-\frac{n}{2} \right\rvert\,>3\right\}\right.
$$

Ex contd: Two Sided (I $(n=10)$
Find a 95% CI far p, supposing $X_{a b s}=3$
Bydefinitian of α :

$$
\begin{aligned}
0.05 & =\operatorname{Pr}\left(\left.\left|X-\frac{n}{2}\right|>3 \right\rvert\, H_{0}: p=1 / 2\right) \\
& =\operatorname{Pr}\left(\left.X>3+\frac{n}{2} \right\rvert\, p=1 / 2\right)+\operatorname{Pr}\left(x<\frac{n}{2}-3 / p=1 / 2\right) \\
& =\operatorname{Pr}(x>8 \mid p=1 / 2)+\operatorname{Pr}(x<2 \mid p=1 / 2)
\end{aligned}
$$

$$
X \stackrel{H_{0}}{\sim} \operatorname{Bin}(10,1 / 2)
$$

All red mass
functions sum to

$$
0.05
$$

thus all black mass functions sum to 0.95 and a 95% CI for p is $\left(\frac{2}{10}, \frac{8}{10}\right)$ or, $\left[\frac{3}{10}, \frac{7}{10}\right]$. uninclusive

Ex.
Suppose $X \sim \operatorname{Bin}(n, p)$ and test $\left\{\begin{array}{l}H_{0}: p=\frac{1}{2} \\ H_{1}: p=\frac{1}{2} \text { at }\end{array}\right.$ an $\alpha=0.05$ significance level, Suppose $n=170, \chi_{\text {obs }}=63$.

$$
\operatorname{Pr}\left(\left.\left|x-\frac{n}{2}\right|>3 \right\rvert\, H_{0} \rho=1 / 2\right)=\alpha=0.05
$$

So, $0.05=\operatorname{Pr}\left(x-\frac{n}{2}>3\right.$ or $\left.\left.x-\frac{n}{2}<-3 \right\rvert\, H_{0} \cdot p=1 / 2\right)$

$$
=\operatorname{Pr}\left(\left.x>3+\frac{n}{2} \right\rvert\, H_{0}\right)+\operatorname{Pr}\left(\left.x<\frac{n}{2}-3 \right\rvert\, H_{0}\right)
$$

Since $X=\sum_{i=1}^{n} y_{i}$, where $y_{i} \stackrel{D}{\sim} \operatorname{Ber} n(p)$, by
the CLT, as $n \rightarrow \infty$ we have

$$
\frac{\bar{y}-p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{n \rightarrow \infty}{ } N(0,1)
$$

$$
\text { le } \frac{\frac{1}{n} x-p}{\sqrt{\frac{p(1-p)}{n}}} \stackrel{n \rightarrow \infty}{\sim} N(0,1)
$$

So $0.05=\operatorname{Pr}\left(\left.\frac{\frac{1}{n} X-P}{\sqrt{P(1-P) / n}}>\frac{\frac{1}{n}\left(3+\frac{n}{2}\right)-P}{\sqrt{P(1-P) / n}} \right\rvert\, H 0: P=1 / 2\right)$

$$
\begin{aligned}
& \quad+\operatorname{Pr}\left(\left.\frac{\frac{1}{n} X-p}{\sqrt{p(-p) / n}}<\frac{\frac{1}{n}\left(\frac{n}{2}-3\right)-p}{\sqrt{p(1-p) / n}} \right\rvert\, H_{0}: p=1 / 2\right) \\
& \stackrel{H_{0}}{=} \operatorname{Pr}\left(Z>\frac{\frac{1}{n}\left(3+\frac{n}{2}\right)-p}{\sqrt{p(-p) / n}}\right)+\operatorname{Pr}\left(Z<\frac{\frac{1}{n}\left(\frac{n}{2}-3\right)-p}{\sqrt{p(1-p) / n}}\right)
\end{aligned}
$$

By definitian of quantiles we have

$$
\begin{aligned}
& 0.05=\operatorname{Pr}(z>\operatorname{Br}(1-\alpha / 2))+\operatorname{Pr}(z<\operatorname{Br}(\alpha / 2)) \\
& =P_{6}\left(\left.\frac{\frac{1}{n} x-p_{0}}{\sqrt{P_{0}\left(1-e_{0} / n\right.}} s h\left(1-\alpha_{n}\right) \right\rvert\, H_{0} \cdot p=p_{0}\right) \\
& +\operatorname{Pr}\left(\frac{\frac{1}{n} X-p_{0}}{\sqrt{\rho_{0}(1-\theta / n}}<\operatorname{f}\left(\frac{(x)}{2}\right) H_{0} ; p^{2} p_{0}\right)
\end{aligned}
$$

Hence we will fail to reject Ho $p=p_{0}$

$$
\begin{aligned}
& \text { if } \frac{\frac{1}{n} x_{0 b s}-p_{0}}{\sqrt{p_{0}\left(1-p_{0}\right)}}>1.96 \\
& \text { or } \text { if } \frac{\frac{1}{n} x_{0 b s}-p_{0}}{\frac{\sqrt{p_{0}\left(1-p_{0}\right)}}{n}}<-1.96
\end{aligned}
$$

By rearranging the above (takes some work and analysis of terms) we plug in $X_{\text {obs }}=63$ and find a 95% (asymptotic) CI for P to be

$$
[0.00698,0.7399]
$$

See the next two pages for additional details. This pg. o the previous are the most important to understand.

Since we FloR when $\frac{\frac{1}{n} x_{0 b s}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}>1.96$
e. $\frac{63}{170}-\rho_{0}>1.96 \sqrt{\frac{\rho_{1(1-60)}^{170}}{}}$
$\mu\left(\frac{\frac{63}{70}-p_{0}}{1.96}\right)^{2}>\frac{p_{0}\left(1-p_{0}\right)}{170}$
lee $\frac{\left(\frac{63}{180}-p_{0}\right)^{2}}{\rho_{0}\left(1-p_{0}\right)}>\frac{(1 . a 6)^{2}}{170}$
re $\frac{\left(\frac{63}{120}\right)^{2}-\frac{2(6)}{170} p_{0}+p_{0}^{2}}{p_{0}-p_{0}^{2}}>\frac{1.96^{2}}{170}$
12. $\left(\frac{63}{170}\right)^{2}-\frac{12(3)}{170} p_{0}+p_{0}^{2}>\frac{1.96^{2}}{170} p_{0}-\frac{1.96^{2}}{170} p_{0}^{2}$
is a quadratic fuctn of po.

$\left\{\begin{array}{l}a=-1-\frac{1.96^{2}}{170} \\ b=\frac{2630}{100}+\frac{1.96^{2}}{170} \\ c=-\left(\frac{63}{170}\right)^{2}\end{array}\right.$

Thus $p_{0}<\frac{-\left(\frac{2.63}{170}+\frac{196^{2}}{170}\right) \pm \sqrt{4\left(-1-\frac{1.92}{170}\right)\left(-\left(\frac{635}{100}\right)^{2}\right)}}{2\left(-1-\frac{1.962}{170}\right)}$
Then, do the same analysis for
$\frac{\frac{1}{n} X_{\text {obs }}-p_{0}}{\sqrt{\frac{p_{p}\left(1-p_{0}\right)}{n}}<-1.96}$ and solve for CI bounds.

