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Topic Review ch 1 3 X's RYanifespaceX

Random variables Rus Xsay are defined
by their distribution function CDF

exspis.netHiIfdmxtunerInsurance policy reimburse

w p 0.3 X Exp E up to some benefit

X level C with some
deductible d

S 1,0 if 8 0 0 X policy holders Exp
loss

Y payout from Insurance co

gfcgui.cc
Ed d ctd

C x Ctd

ne É i priYabiFme iÉÉ
DI

1 Pr X I

2 If ACX then Pr A O

3 If mutually disjoint A Az

Pr A E PrCAi

Sef Conditional probability
PCA B PHIBBS



LawoftotalProbability

EE Sand Bin Bj D for if

they For any event AER
Pr A E PrLAIB PCB

All Rus have a CDF Many RVs have a density
function as well

fylxjflxs.MGdTyhdx
Likelihood is the density function
but viewed as a function of the
parameters

É f xi0 f OIX Lh

IS a function of 0
Read as the likelihood for O given X x

Applying the Law of Total Prob to jointly
distributed RVs C Y yields

fyly ffyy.my X x fylx dx
x

in the case where both X Y are continuous

ID



9 2 22 week

BLYesRuleLaw combines law of tot Prob wi
def of conditional prob

For A Bi y Bn where Bi are disjoint w
all Bj itj YB D and PCB 0 for all i

we have that

EyPr Bj
LA

PCA Bj Pr Bj
E PRCA Bi Pr Bi

TdefendPr Bina Pr ARB

PrCA 41 EPr
ALBIPr Bi

Reverse Conditioning

JointlyDistributedRV
Ex A Y

Xi X2
Xi Xz Xn

Q what is the sample space for jointly distbted
RUS say X wi sample space X and Y wi samp

space y



Distribution Notation

rointffest

Fix.y Pr XEX YEy Flag Pr Xex Yey

fylx Fy x Syfixyldy

Marginal ply Fypay
where
Fy Pr Xx
gxF xy
L flu y dydy

audition Blyth Piggy f.ylxlykfy.gg ifoafyms
O otherwise

marginal Y.IE 1 tszraegiayfyly
Fy'ly

t

conditional
prexy yay fyn yIx Pr X

x

fyly



In general knowing the marginal distbh
of X and of Y is not enough
information for us to determine the

joint distbh of X Y
unless A XHY

X and Y are independent abbreviation

fe

Independent RVs

For RVs Xi Va wi joint distbin fnetn

FIX Xu

we say Xi Xn are independent RVs

f
Ffa xn FxWi Fyfe Fxnan

It can be sham that this is equivalent
to saying that the joint pmf or

joint density factors

Indicator froth
TILx 13 21

if 044

O Ow

E 0445 Pr ocX D 1 Pro X2
to Pr XEON



Next week

expectation variance covariance

conditional expectation a variance

moment generating functions

methods of estimation

Legend

Be Notation
at Examples questions

Definitions

of Proofs nor theorems

1 Looking ahead planning topics

ProfSuzy notes to self
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Topic Review Ch 4

Def Moment Generating Function Mbf
of a discrete RV X is of a continuous RV Xis

MCH Eye Pyu Mct S e fyWdx
x

The MGF of RV does not always exist ex Cauchy
but when it does it uniquely determines the RV
The Characteristic function like the CDF always
exists but is a complex function

Def The moment of a RV X are

E X for 5 1,2

The rt derivative of MGF Mlt evaluated
at t 0 is the rth moment of X

Ie M O E X

provided Mlt exists in an open interval
containing zero

The firstand second moments of a RV
determine its expectation a variance



Expected
Values Discrete Continuous

Ex ExxPx'd Exfyadx

EI Eggapyx
S

gexlfytxldxELYIX
XJ zyyp.nl

x

JyyfyCylxldyEfglY
X x zy941pyixlylxsfyglysfyylyld.ly



The expected value is the sum of

the possibilities of
a RV

times theirbabilitiepros

Note Efg X gLECH

EX 1.4 2.12 22

Ex x L P ight Ego It E
g Ex g 3 3

However we do have the following result

Jensen's Inequality
For any convex function g and any RV X

g EX E ELGIN

provided Efg x and g ex exist and are finite

concardox
Incorrect These a swapped
see pg21



Expectation is a linear operator
EEE ait biXi Efa bill fastballa

t it

can bun
Ela tbXi Efartbaxist telantballn

É É ai t biE Xi

Markov's Inequality

If X is a positive RV for which EX
exists

Pr x t E EI forany
R

mean slasher

Ex of Markov's inequality

variance difference
Chebyshev's Inequality
If X is a RV whose first and second moments

exist then f any t o

Pr IX EMI E PRIX ENT t

EMILIE
Varix 2



Law of Iterated Total Expectation

For RVs X and Y

ELY X is a RV

because it is a function of X which
is not fixed It always holds that

ELENIXD ELY
For a proof see pg 149

note Ely xx is a function of x and

is thus IT a RV since X X

Is fixed

If Rr xtts Ecx are then

Var X E X EAD

E X LEX



Variance is a nonlinear operator
Var É ait biXi Var la tb.xdtcaztbi.lt

Cant ban

Var Eia t Ébilli
Var EIbiXi

seepage

If we are only interested in one RV then

Var a thx b'Var X

Variance is the average squared distance

between theatres
of a RVant

EVE Formula Iterated Variance

For RVs X and Y we have that

Var Y E Var YIK Varley x

Proof on pg 151



Covariance

If X Y are jointly distbltd RVs whose

expectations exist

Cov X Y ELIX ENCY ELY

E XX ECHELY

Furthermore
Cov Xix Var X

Properties of variance a covariance

Let U at EibiXi V Ct EidD
for Rus X Xz tn Yi Yz Ym

Cov U V É É bidjCov Xi Yj



in particular
Var U Var at EI biXi

Var II biXi

Cov EibiXi ZibiXi

IFÉbib Cov Xi Xi

Ex If Xu Xn are independentandidentically
distributed

what is Var FixIID

var EX É.VarXi
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Topic Estimation Part I can 4 8

Setting Xi Xn ID f x 0 is marginal density

frm
Q What's the difference btwn statistic and anestimate

targetseral aparticularparamed
Both however are fnetns of the random sample

Deriving an estimator Recipes

Method 1 Method of moments
Tsiderthe first few moments of
the population distbin

Me E X Create a system of equations
µ EM

YatanbenedMs Efx
the parameter s 0

Then substitute the sample estimates of
these moments into solution for 0 above

so

y
n'Eixi take the place of

Me III X Mi Mz

Ms III x and the result
is the estimator



Method 2 Maximize the Likelihood

IX x2 in are an ID sample
from a population w distbin

Fy k and density fylx then

what is the joint density of exits tn

XiYamin Iffy 4 fyi fix o

If we think of this joint distribution as a

function of the parameters for fixed
observed data Xi Xa Xn xxx Xu
then we are referring to

the likelihood of the parameters
given the data

I

Thekettlikelihood like f x D

log likelihood 110 logflikoy



Once we have a likelihood for Q
often we can maximize this function

writ O The maximum global is

often a useful estimate for 0

Paradigm shift

Method Use Bayes Theorem

Treat the parameter O as a RV
come up w an initial guess for the
distribution of a 10

Typically a prior is denoted as

On PLO or ON 10

Given a likelihood function for 0 conditioned

upon the observed data Xuxa al
use Bayes theorem to find the
conditional distribution f Glx
Typically this posterior density

is denoted as

OLE NICOLE



Altogether we have
likelihood

for

likelihood fly o
prigadist

I FI
fx.io i

prior TCO

posterior Holy HOfE

a What is SqafthT normalizing

is the parameterspace constant

often we can ignore the normalizing constant
and specify the posterior up to proportionality

THE ILO fait
is proportional to

Note The entire distbn of the posterior
is a distribution function estimate
for 0

We can derive point estimates for 0 by
considering different qualities of the posterior
For example posterior mean

posterior mode



Q Are these the only ways to derive an estimator

no there are infanite numb of ways
to derive an estimator

Q How do we know if an estimator is useful

This is what welldiscuss next

Sett Given an sample x x2 Xn of RVs that follow a

distribution depending on unknown parameter O denote

Ence as an estimator for 0

Note In k is a RV Inca is a fixed constant

Desirable characteristics for estimators

consistency
n is consistent for 0 if for all e 0

n'be Pr 18 01 E 0

Q what type of convergence is this
this is an example of limit in probabilit

Ex weak LCN sample moments popmoments

note continuous functions preserve consistency

unbiased

On is unbiased if E En 0
ie the center of its sampling distbin is 0



Evaluating an estimator

Def Mean Square Error

If we are targeting parameter 0 w an estimator In
then

MSECED ECCE OT ÉÉÉnjst
Eton 0 Var In

bias I variance

strategies to show consistency

If En is unbiased substitute Eton in for 0
then apply a limiting I

if In potentially biased then we have to usually
work wi the CDF of In

Pr 18 01 e Prion Ote Pr En O e

evaluate separately 7

simettimes
you have to get more creative

Eg Jensen's I could be used to prove biasedness
the strict version



Topic Detour for errata

Jensen's Inequality

gY
For any tox function g and any RV X

CYP
g EX E EEN

provided Efg x and g ex exist and are finite

Correction My heuristic for remembering concave convex
doesn't work

flookslikanly

u n
convex concave up concave down

f o f LO

Q When is the inequality strict
When the concavity is strict
no plateaus

Now back to properties of
estimators



Ex Suppose Xi Xn are ID from 41010
consider the following estimates and
determine if they are consistent

Consistent Unbiased Estimate

yes yes 8 25

No yes

yes no
ie largest

no no É

Y
Note

only use the
X has density first observation

not
necessarily

fy.IN 8 04 0
the
minimum

and CDF

Fx x Pr X X I OLEG



9 14 22
820
41
25 2E fÉx 2x f xE x that tn

3 x Elk Eat EXn

In NEX 2 81 00
Is unbiased

consistent

I is consistent for Efx E Why
A ble sample moment

are consistent far

94 2x is a continuous function populationmoments
LIN

get LI is consistent for LEE 0

is consistent



É

in.MX FE xi 2.8 00 is unbiased

pÉÉÉÉ ca eat e

Pr Xx E 2 1 e

em tied
4Vay not afatsoofnot helpful

Let's try the CDF approach

Pr 182 0172 Pr 24 Ote Pr 2x co e

Prix E Pr X coz
I Prix OE Eye
14 88

L EE EE
20 02

01

I not consistent

Note Estimator is function of X only so we really didn't need
to do all that work



CDF for 83 Pr 8 ex P Xin Ex

bydeff Pr X ex kex XnEx

CAIR Koep Pr X ex Pro ex Praex

Pentical
Pr X ex

density for 3

fam
hmm I

0 0
61

02 0

Intiased
E E Xin 88 x x dx If x dx not

XIII o unbiased

FEI O III
Consistent
Pr 103 01 E P Xin Ot E Pr Xin LO e

Site find I fxingdx

ad o I Ex dx

CIS x dx

Eli
co an o

n't 1081 0 since O o D is consistent



É

Unbiased

ELI ftp.t.fy.lxidx ftp.todx If dx

154 undefined

not unbiased ble
expectation doesn't exist

Consistent
Again estimator is a function of X only
so what happens as n x

Nothing The estimator doesnt change w

the sample size

not consistent

to
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Ex stakeholder analysis of using a consistent
estimator

dosage that max benefit min harm Popsiableameters

a change
in B cell counts after

using medication

o gg
estimates

82 X change in fluoresence intensity
Possible

Suppose at long kg is a consistent estimator

for 0 dosage that Max benefit min harm



&KRLFH�'HFLVLRQ��'HFLGH�ZKHWKHU�RU�QRW�WR�XVH�D GUXJ WR�WUHDW 6\VWHPLF�/XSXV�(U\WKHPDWRXV ZLWKLQ
WKH�ILUVW�IHZ�\HDUV�RI�GLDJQRVLV��+HUH�LV�DQ�H[DPSOH�RI�D SLORW�VWXG\ FXUUHQWO\�RQJRLQJ�

6WDNHKROGHU
3RWHQWLDO�UHVXOWV

+DUP %HQHILW

0HGLFDO
SUDFWLWLRQHUV

0HGLFDWLRQ�XVHUV

Ɣ ([DPSOH�KDUPV��FRVW�RI�PRQH\��WLPH��HIIRUW��QHJDWLYH�LPSDFW�WR�UHSXWDWLRQV��FDQ�EH�WDQJLEOH�RU
LQWDQJLEOH�ZLWK�LPPHGLDWH�RU�GHOD\HG�HIIHFWV

Ɣ ([DPSOH�EHQHILWV��HDUQLQJ�RU�JDLQLQJ�PRQH\��UHPRYDO�RI�D�KDUP��VDYHG�WLPH�RU�HIIRUW��LPSURYHG
UHSXWDWLRQ��GHPRQVWUDWLRQ�RI�H[SHUWLVH�

6RXUFH��7UDFWHQEHUJ��5��(����������7HDFKLQJ�DQG�/HDUQLQJ DERXW�HWKLFDO�SUDFWLFH��7KH�FDVH�DQDO\VLV�
KWWSV���GRL�RUJ����������26)�,2���80:

perscribe
Possibly not a for the majority of

the population

In dose
to patients are

represented in the this estimated dosage

patient population for will be the best

which we
have a
sample dosage

take In
dosage

https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=2fa3c528-1777-4628-8a55-a69dae2381a3#ID_b33d1eb8-c38b-4beb-9c08-ce2ce315eb8d
https://www.fda.gov/consumers/consumer-updates/lupus-therapies-continue-evolve
https://clinicaltrials.gov/ct2/show/NCT03543839
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Topic Estimation Part II KhsWeek 4

Large Sample Theory for MLEs MLE
specifically

Setting Xi Xn ID f x D

like fix o
En value of 0 that

110 In fix D go.IE Infnow
kt0

value of O

n x

Def The score is the gradient first derivative of the
likelihood froth rate of change

810 0110 in log likelihood

Note In the MLE for O givenLobs is a zero of 5 0
ie S In 0

Im If fix D is smooth enough then the MLE

is consistent

Note The expected value of 510 is 0 at 0 0

ble

Elsa ELENI É
sIY

ffftyftffixiodx
ofxi.dz ff dx 21 o



IedursiaofE

E 510 ELENA f f ELLO f x int dx dxn

FtfgfY I flx xn o dx dx
att f

g gg x xni0 dx d

f
witriarge C f fftxn.ixni.to dx idIs

EL
O BE

Related to

Ithm Leibniz Integral Rule specialcase

day S fix a du f fix a du



Jef The Fisher Information is the variance
of the score

Into E 114134
2ndmoment of score fact n

This Information Identity
If fix D is smooth enough then

Inco E 4 101 ELECT

EIIE.FI i

FIloT En Oo d
NCO 1

a What does it mean for an estimate to be optimal



Def Suppose I and I are estimators of 0 that

have the same bias le ELE O ELE O

The efficiency of E relative to Ea is

eff E É Var OH Var OT

Note If we are comparing asy variance of an

estimator we call this the asymptotic
relative efficiency

Then Cramer Rao Inequality

Suppose X Xn are ID fix O where fax D
is smooth enough Let T TCL be an unbiased

estimate of 0 Then Var T 7 NINE
Cramer Rao LowerBand

Note An unbiased estimate we variance equal
to the is said to be effecient

Note As no the MLE is asymptotically
effecient

Is asymptotic unbiasedness the same

thing as consistent why why not



Why not textbook uses fix 10
9 21 22

f Xi D density for Xi the score function
is the gradient ofIf Xi Xn are ID then
the log likelihoodthe likelihood is

110
like f X O The score function has

mean zero and
and the log likelihood is varience equal to

the Fisher Information

110 Ilg f Xi O I 10 ELEM
Info about 0 contained in Xi Xa

Your textbook considers the score

for a signed X

log f X 0

where the Fisher info is thus

ICO E 1 194 017
is the info about O contained in X alone

I



Consider the logdensity log f x D

Q What is the 1st population moment

Ef log fix O flog ftp.t Iffx Oo dx
IN TX oetnsity fort

Q What is the 1st sample moment

II log flexi O 4110

Now consider the gradient of the

1gensity I log f X D

a What is the 1st population moment

EE logf X D f log f x O fix Adx

f 20141 fix it dx E fEoftp.oodx f flxioddx Eli g

Q What is the population variance

Var Elogfly 0 E logfix o E Elgfx o

ICO
at 0 00 BE

l



Warm up group work
5min

Identify strategies stuck points approachs

you tried to solve

assigned HW 8 problem

5th II Brian
Sec 1 Sherry Annie Patty

GuyMiles Amy Tillie

Mwangangi Bent Joey
See 2 Tinashe Atesh Jason

Zack Jonathan Rodas

Alex Sarah
Jorge Heyman Yoda
Bene Gertrud

Review consider
what strategies approaches were most useful



Sufficiency not just
Setting Xi Xn ID f x D

Én ÉCxi xn
lik10 If1xi D

is an estimator
110 EI In flat fort

Q Is there an estimator that contains as much
information about O as the entire

sample X tn

Jef A statistic T TIX Xn is sufficient
for parameter 0 if

Xi Xn Ft

follows a distribution that does not depend on 0

Tim Factorization Theorem

Statistic T Xi Xn is sufficient for 0

iff
xn 0 g t x tn D h lx Xn

likelihood

must involve all
of the observed

data



Exponential Family
The family of probability distbin functions that
have sufficient statistics of the same
dimension as the parameter space is

called the exponential family

1 Parameter Exponential family
fix o exp CLOTH do fix
for all XEA where A 10

K parameter Exponential family

µ

for all XEA where A 10

Note If T is sufficient for 0 then the MCE

is a function of T

We can see this is the case ble

Thi Xn sufficient means

like

Egm 95gal
ha

g

MEEEE mats



Tha Rao Blackwell Theorem

Let E be an estimator for 0 sit ELEY ex

If T is sufficient for 0 and If E ELE IT
then for all 0

MSE ELLE ONE ELLE OY
Furthermore the inequality is strict unless É E

Note If an estimator is not a function of
a sufficient statistic and if a

sufficient statistic exists then the
estimator can be improved
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Group Work

Dissecting Proofs

Example Information Identity

Define I10 EEologflX 07
If flt is smooth enough the we have

ELEologfIX.FI ELEzlogFlXioJ

1 Confusing steps
combining identities in a useful way

how does SEologffxio f xiodx SLEozlogfixigfixiodxtffflogfcxi.tl
flxioldx

2 Useful techniques

the fact that Sfixioldx 1 swapping and f dx
and

rearrange Eologfixio Eff
3 Narrative

use property of
density foetus

take 2
rearrange

a
deriv identities

swap diff integ applying calc rules result



Example Working thru steps of Cramer Rao

pgy
For me these were the most confusing
steps in this proof

ELZY E I loglflxi 0DJTCX.i.in

J x tn 1Zlog f xii0 f xn ixni0 dx dxn

In times

J x tn EZlog f xii0 yIflxjiDdxji

Tote IEjfIIfhsio
9fYgI flx.io fGzQ fan o

Fff j fix o fan o

t f ni find fait



pg

ELZ ELITE log f Xi 0

EfÉ

EE YH
É f If ax

at

Ii fzaflxi.at da

If zofflxi.to da
II E In



Effi G fazio fan t

Eof XzG If a FIX3,0 fan

If xn O f x old flat fan D

FoIIF Xi 0
Hence

ELZA

J ft x a fÉZlg f xi o If xj F day

f ftlxi.info tflxi
o dxi

S Sta a IIFA O da den

ZEE ETCXi Xu

Be



Hwa 1 Bayesian Estimation Prediction
0 prob that bball player successfully makes a shot

prior IO 410 I

obs data 2 successful shots in a row

assume outcomes of shots are independent
a what is the posterior density of 0
b What would you estimate is the probabilitythat this player makes a third shot

What is the probability model for the data

Let x o miss Xn Bern Q
1 scare

Pr Xx Eci g

Now we can evaluate the likelihood fort
given the observed outcomes data

X XE

Pr X 1,1 1 Prix D Pr Xel

O 1 0 O 1 0
2

what is the prior density on 0

two I I OE I NO



Now we can evaluate the posterior conditioned
upon the observed data

com x s EiI
iit

gyp
0 0513 j

Finally we can check our answer

by verifying that Stated
So 38do 1

Part b is a question about how to
use the posterior to estimate
the true value of O

E O 1,4 1 GO Hotel 1 do

Jj 38 do
BE



Group Work Results
9 28 22

for Dissecting Proofs Worksheet

CramerRaolnequality
Most confusing steps ELZ 0

Cov Z T E ZT

See Example Workingthru steps of CramerRao above

Tricks techniques chain rule
Lebuniz rule for diff a int
properties of score a

definition of Fisher info

story

WE



mosIashingsteps varlets o only if

understanding what is meant by É

how does comparing MSE's
come down to comparing variances

Note E E ELE ELT by law of iteratedexpecta

so E and E ELE IT have the
same bias

Also note If I is a function of T then

E ELECT ELECT IT is not random

Tricks o techniques law of iterated expectation
and E V E property of
conditional variance

story

Be



Factorizationth
most confusing steps

P.EE1 1IIE
how to get get EE

hE

Suppose Xi Xn are continuous
over sample space 7C Then

Pr 1 2 Ft Pr Xix Xena Xuan Tai Matt

f f fix ta Xn Elda dye
A where A is 3141 taxi in t

byassumption f fg this Tn htt Xa dx da
A

Tricks o techniques
expand joint density terms

manipulate sums

assume A deduce B then
assume B deduce A

story

A



Topic Estimation Part II
ch 8

quantify the uncertaintyConfidence Intervals
inherent to point estimation

G indirect assessment using properties
of

of uncertainty random sampling from
For Dl data an assumed model

Mint.IE itedm parameter
fixed unknown

model always a
Recall constant

É Xi in is a point estimate for 0

Cis random has a sampling distbin
but

É Ea xn is the point estimate
evaluated for observed data

E is fixed data has beenobserved

Similarly
A confidence interval for 0 is a random
interval until the data is observed

random ble it is a fan of X tn



Process
Teethe sampling distbin of En in particular
the sampling variance of In to identify
a lower bound LB and upper bound UB
on the most plausible values for Oo

Interpretation

Toughen say we are l a 100 confident
that the true value of 0 ie Do lies w in

LB UBI what we mean is something
a bit more involved

Based on the assumed model for the data
the probability that the random interval
BLE UB Enl contains the value of

O that generated the data Oo is Cra

Tips o techniques

often.it seful to plot the

density or mass function for the
sampling distbin of In to identify
which distb'n quantiles to use in the CI



Example of exact and approximate CIs

HW 8 2b

E d
Xi Xn ID Exp e

lik o Itf xie II feet I x 03 I É I x o

a.FI I Y eiDGiven If Xin Gamma n T

anatiggetty
L

Gamma n ne

density

the

lower

2 2
lower 1 2 thquantile

Notation ie upper E quantile

E Notation H
Knin

Rn 1 E



Note we could asymmetrically
choose the quantiles e.g

find

ikke

King

But in either case
since I is unknown we can't find these
exact quantiles Instead we'll try to find
a way to express this idea in termof quartiles
from a distribution w no unknown parameters



Using properties of the Gamma distbh

we note that

I In Gamma n n

This is called
a pivot ble
the distbn does
NOT depend on

Hence any unknowns

X

AtKnin Kan 1

and these quantiles don't depend on

any unknowns

Eg In R 8mn14s is found w the code

gamma E shape
n Ifan lowertail t



So we have by definition of quantities

Pr Knin EEE Kan 1 42

Pr Khl c I ekn.nlI

I d

Internvertthis weget
the same
answeras

Hence

gray zingy
Effigization

is a 1 2 100 CI for t

BE

co



Notesthisversion
Hw 8 3b consistent wi the

parameterization in

Xi Xn ID Exp e f your textbook

liklo IIfixie II tétxiI so TÉ I xoxo

Em I

TCYanfzx.fi Iayd
CLT

iffy recoil for sample
Xi Xn

are highlighted

ingreenythus we have I
i

s

far 9 28 22
no to see the

other version

is a

pivot

E lower

Notation

p

E quantile
her

a

gantile

Be



By definition of quantile

PrGEE EEI.IM
Pr ZEeIrnII E EYED

Prize seat rn Eye a

Pr yes rn EFI Beat rn

Pr LIE I BEIL
Pr M e r e MII
1 d

Itineratethe same
answeras
before

w

Hence MEI heft I weather.at

Is a 11 a 100 approx CI for t
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crepintervals quantify our personal

feelings of uncertainty
I direct assessment about the value of

of uncertainty a parameter that generated

If X oh are D the observed data based

Xi Xn Itf Xi o
on an assumed mode

Q TO parameter

both parts form the
described as

assumed model a RV
The observed data Xi in

fixed unknown
are realized values from

that producedthe joint distbln.IIflxii.to Yfffdata
The goal of Bayesian inference
is to use the data to describe
plausible values fer to though a posteriordistb

IT O xi D Data is fixed
Not random

A credible interval for O is a random

integration in it is

a function of
a RV wi density it a

x in



Process
Teethe posterior distbin of 0 given the
observed data to identify a lower bound CLB
and upper bound UB on the most plausible
values for Oo

We choose LB and UB based directly

upon quantities of the posterior

Interpretatatta
w credible interval

LB UBI contains Oo wi probability W

Although this is easier to interpret than
a confidence interval what's harder to
communicate is the rationale behind
the posterior distbin



Figgyderivatimofal intervale
derive posterior
distb'n for a100 items randomly sampledgoat

td

t.ph

3 defects found

D proportion of total defective items in the population

lik o 5 0310103 if we let x 9 detectifective
where X Bern O

Tito n Beta a b means no fifth 094 05
is the probability distbh we are going to use to
express our uncertainty about Go

tear for Notes on M function

Farpositigeratalai
FlatD a Tla

For any a besides negative integers or zero Flak MaadIeremia
It etdt

With Lika and ILO we can now find the
posterior density

Holton 1ÉIf



Y of successes out of 100trials

1019 31 FIggIIFIIfEtfdo
cities

looks like Beta 3 997 6

Holy 3 Beta Ha 97th

So 011 3 Beta 3 9 97th is the posterior
distribution for 0 given the obseved data

For given Values of a and b we can find

any quantiles we may want



density Holy 3

r

1 0.025
lower 2.5

quantile of lower97.025

Beta Sta 97th quantile of
distbin Beta sta 97th

distbin

In R qbeta
0.025shape 3 ta shape 97th lowertail T

what we're doing is using the shape of the
posterior density to find an interval that
describes the most typical values for Oo
Such credible intervals may also be called

highest posterior density regions hpd for short

Far W 95 say

If a b I then a 95 credible interval for Oo is

0.013 0.842 but

if a 0.5 6 5 then a 95 credible interval for Oo is
0.0001 0.4096 Ago



Group Work
create a mind map relating as

many theorems from ch 8 as you can

MLE is consistent
Identity for Fisher Info

Asymptotic normality of MLE

Cramer Rao lower bound
Factorization than for sufficient stats
MLE is a function of sufficient stat

Rao Blackwell Theorem for estimation we
sufficient statistics


