
Stat 21 Homework 5
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Due: Sunday, March 13th by midnight
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Use this file as the template for your submission. Do not delete anything from this template unless you are
prompted to do so (e.g. where to write your name above, where to write your solutions or code below). Make
sure you have installed the following packages in your version of RStudio: tidyverse, knitr before you
attempt to knit this document.

Your completed assignment should be submitted as a single PDF using the link under Week 7 titled “Submit
HW 5 to Gradescope”. You must use R markdown to write up your solutions. For any homework problems
that involve coding in R, you must provide both the code and a written answer interpreting the output within
the context of the problem. You are allowed to work with your classmates on this homework assignment but
you are expected to write up your own solutions. Every answer must be supported by a written statement
unless otherwise specified. A good rule of thumb is to make sure your answer is understandable to someone
who hasn’t read the problem question (or code output associated with it).

Additionally, make sure that when you upload your solutions to Gradescope, you select which pages go
correspond with which questions. Also, check to make sure that your knitted homework document is not
uploaded as an extra-long single page document. Failure to do these things will result in a penalty on your
homework grade. Finally, I strongly recommend that you address and resolve any knitting or R coding issues
before Saturday as solutions to any R-coding questions that are not knitted properly will not receive any
credit.

Part I: Non-R Problems
Problem 1
Decide if the following statements are true or false and explain why:

(a) For a multiple regression problem, the adjusted coefficient of determination will always be smaller than
the regular, unadjusted coefficient of determination.
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(b) If we fit a multiple regression model and then add a new predictor to the model, the (unadjusted)
coefficient of determination will never decrease.

Solution:

(a) True. Because n− 1 > n− k − 1, we have that SSE/(n−k−1)
SStot/(n−1) > SSE

SStot and thus

R2
adj = 1 − SSE/(n− k − 1)

SStot/(n− 1) < R2 = 1 − SSE

SStot

(b) False. If a new predictor is added to a model, but that predictor explains very little extra variability
in the response, in the presence of the other predictors, then SSE only decreases by a small amount,
while n− k − 1 could decrease more as k increases. This means that SSE/(n− k − 1) can increase,
causing the adjusted R2 to decrease

Problem 2
Caterpillars go through free growth periods during each stage of their life. However, these periods end as the
animal prepares to mold and then moves into the next stage of life. A biologist is interested in checking to
see whether two different regression lines are needed to model the relationship between metabolic rates and
body size of caterpillars for free growth and no free growth periods.

(a) Identify the MLR model for predicting metabolic rate (Mrate) from size (BodySize) and an indicator
variable for free growth (Ifgp = 1 for free growth, 0 otherwise) that would allow for two different
regression lines (slopes and/or intercepts) depending on the free growth status.

(b) Identify the MLR model for predicting Mrate from BodySize and Ifgp, when the rate of change in
the mean Mrate with respect to size is the same during free growth and no free growth periods.

(c) Identify the full and reduced models that would be used in a nested F-test to check if one or two
regression lines are needed to model metabolic rates.

Solution:

In each of the following, let x1 = BodySize, y = Mrate, and x2 =
{

1, if in free growth period
0, otherwise

. Also,

assume ε are identically distributed random noise centered at zero with a constant variance.

(a) Y = β0 + β1x1 + β2x2 + β3x1x2 + ε

(b) Y = β0 + β1x1 + β2x2 + ε

(c) model in (a) is full, model in (b) is reduced

Problem 3
Suppose the biologist in Problem 2 gives you data on 53 caterpillars. Identify the degrees of freedom for error
in each of the models for parts (a) and (b).

Solution:

(a) 53 − 3 − 1 = 49

(b) 53 − 2 − 1 = 50

Problem 4
Suppose that X1 and X2 are positively related with X1 = 2X2 − 4. Let Y = 0.5X1 + 5 summarize a positive
linear relationship between Y and X1.
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(a) Substitute the first equation into the second to show a linear relationship between Y and X2. Comment
on the direction of the association between Y and X2 in the new equation.

(b) Now add the original two equations and rearrange terms to give an equation in the form Y = aX1+bX2+c.
Are the coefficients of X1 and X2 both in the direction you would expect based on the signs in the
separate equations?

Solution:

(a) Y = 0.5X1 + 5 = 0.5(2X2 − 4) + 5 = (0.5 × 2)X2 − (0.5 × 4) + 5 = X2 + 3 is again an equation for a
line with respect to X2. The coefficient of X2 is also positive

(b) X1 + Y = 2X2 − 4 + 0.5X1 + 5 which implies that Y = 2X2 − 4 + 0.5X1 + 5 −X1 = −0.5X1 + 2X2 + 1
so now it appears that X1 is negatively associated with Y (this demonstrates potential confusing effects
in the presence of multicollinearity)

Part II: R Problems
Problem 5

library(Stat2Data)
data(ElephantsFB)
head(ElephantsFB)

## Age Height Firstborn
## 1 1.40 120 0
## 2 17.50 227 0
## 3 12.75 235 0
## 4 11.17 210 0
## 5 12.67 220 1
## 6 12.67 189 1

Elephants are worse off if there is a drought during the first two years of their life. Suppose we are interested
in determining if maternal experience matters as well. That is, we want to determine if it is helpful or harmful
if an elephant is firstborn. The data set ElephantsFB has data on 138 male African elephants that lived
through droughts in the first two years of life. The variable Height records shoulder height in cm, Age is the
age in years, and Firstborn is 1 for firstborn and 0 for non-firstborn.

(a) Plot Height against Age and comment on the pattern.

(b) What is the fitted quadratic regression model for using Age to predict Height?

(c) Use the fitted model from part (b) to predict the height of a 15-year old elephant. What does the model
predict the height will be?

ggplot(ElephantsFB, aes(x=Age, y=Height)) +
geom_point()
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elephant_mod <- lm(Height ~ Age + Age:Age, ElephantsFB)
elephant_mod %>% summary

##
## Call:
## lm(formula = Height ~ Age + Age:Age, data = ElephantsFB)
##
## Residuals:
## Min 1Q Median 3Q Max
## -63.893 -16.119 2.531 17.969 54.132
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 123.1155 3.3255 37.02 <2e-16 ***
## Age 6.9329 0.2898 23.92 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.46 on 136 degrees of freedom
## Multiple R-squared: 0.8079, Adjusted R-squared: 0.8065
## F-statistic: 572.1 on 1 and 136 DF, p-value: < 2.2e-16

Solution:

(a) there is a curve in this scatterplot

(b) ExpectedHeight = 100.2 + 13.383(Age) − 0.2643(Age2)

(c) 100.2 + 13.383(15) − 0.2643(152) = 241.5 cm

4



Animals that are stressed might increase their oxygen consumption. Biologists measured oxygen consumption
of shore crabs that were either exposed to 7.5 minutes of ship-noise or 7.5 minutes of ambient harbor noise.
They noticed two things: (1) the greater the mass of the crab, the greater the rate of oxygen consumption and
(2) ship-noise affected the crabs differently from ambient noise. The data set CrabShip includes the variable
Noise, which has two levels: “ambient” and “ship”. The variable Mass (g) is the mass of the crab. The
variable Oxygen (µmolesh−1) is the rate of oxygen consumption. Use this information to answer problems
6-8.
library(Stat2Data)
data(CrabShip)
head(CrabShip)

## Mass Oxygen Noise
## 1 22.7 89.2 ambient
## 2 34.6 141.1 ambient
## 3 36.0 140.1 ambient
## 4 40.1 204.9 ambient
## 5 47.5 129.1 ambient
## 6 49.6 154.6 ambient

Problem 6
Make a scatter plot of Y = Oxygen vs X = Mass and with Treatment as a grouping variable (i.e. use
different colors or different plotting symbols for the two levels of Noise.) Comment on the plot.
ggplot(CrabShip, aes(x=Mass, y=Oxygen, color=Noise)) +

## Note, this color option will only work if the variable Noise is of type factor (or fctr)!
geom_point()
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Solution: looks like the slope for treatment level ship is steeper (higher) than that for treatment level
ambient. in other words, higher oxygen levels for different mass values for ship group than for ambient group.
more noticeable difference for moderate to large crabs.

Problem 7
(a) Fig the regression of Oxygen on Mass and test whether there is a linear association between the two

variables.

(b) Fit a model that produces parallel regression lines for the two levels of Noise.

(c) Fit the general model that produces nonparallel regression lines for the two levels of Noise.
## a
moda <- lm(Oxygen~Mass, CrabShip)
moda %>% summary

##
## Call:
## lm(formula = Oxygen ~ Mass, data = CrabShip)
##
## Residuals:
## Min 1Q Median 3Q Max
## -86.785 -41.557 -3.188 38.177 114.558
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 108.3950 33.2650 3.259 0.00265 **
## Mass 1.7667 0.6011 2.939 0.00606 **
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 53.02 on 32 degrees of freedom
## Multiple R-squared: 0.2126, Adjusted R-squared: 0.188
## F-statistic: 8.639 on 1 and 32 DF, p-value: 0.006063
## b
modb <- lm(Oxygen~Mass+Noise, CrabShip)
modb %>% summary

##
## Call:
## lm(formula = Oxygen ~ Mass + Noise, data = CrabShip)
##
## Residuals:
## Min 1Q Median 3Q Max
## -68.364 -18.938 -3.953 17.210 74.905
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 54.4279 24.9816 2.179 0.0371 *
## Mass 2.0734 0.4231 4.901 2.85e-05 ***
## Noiseship 75.2795 12.8000 5.881 1.72e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 37.03 on 31 degrees of freedom
## Multiple R-squared: 0.6278, Adjusted R-squared: 0.6038
## F-statistic: 26.15 on 2 and 31 DF, p-value: 2.221e-07
## c
modc <- lm(Oxygen~Mass+Noise+Mass:Noise, CrabShip)
modc %>% summary

##
## Call:
## lm(formula = Oxygen ~ Mass + Noise + Mass:Noise, data = CrabShip)
##
## Residuals:
## Min 1Q Median 3Q Max
## -54.719 -21.350 -4.149 12.715 73.261
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 103.2703 29.3894 3.514 0.00142 **
## Mass 1.1869 0.5121 2.318 0.02746 *
## Noiseship -34.3904 43.0782 -0.798 0.43096
## Mass:Noiseship 2.0705 0.7826 2.646 0.01286 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33.9 on 30 degrees of freedom
## Multiple R-squared: 0.6982, Adjusted R-squared: 0.6681
## F-statistic: 23.14 on 3 and 30 DF, p-value: 5.942e-08
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Solution:

In each model below, let y = Oxygen, x1 = Mass, and x2 =
{

1, if ship noise
0, otherwise

(Note, by default, R chooses

the reference category for a set of indicator variables alphanumerically)

(a) There are three equivalent tests one could conduct here: a test for the significance of the single predictor,
a test for the significance of the correlation between the predictor and the response, and the ANOVA
overall F-test for the fit of the SLR model. The p-value for any of these tests is 0.006063 which is small
enough to conclude that there is a statistically significant linear relationship between Mass and Oxygen
(this is only if the residuals plots show no clear indication of non-linearity however!).

ŷ = 108.3950 + 1.7667x1

(b)
ŷ = 54.4279 + 2.0734x1 + 75.2795x2

(c)
ŷ = 103.2703 + 1.1869x1 − 34.3904x2 + 2.0705x1x2

Problem 8
Which model from Problem 7 is the best choice and why? Write down the fitted prediction equation for each
level of Noise for your final choice. (Hint: Assess the regression model conditions in each of the models from
Problem 7 to help inform your choice.)
crab_data_all <- CrabShip %>% mutate(resids1 = moda$residuals,

fits1 = moda$fitted.values,
resids2 = modb$residuals,
fits2 = modb$fitted.values,
resids3 = modc$residuals,
fits3 = modc$fitted.values)

ggplot(crab_data_all, aes(x=fits1, y=resids1)) +
geom_point() +
geom_abline(slope = 0, intercept = 0) +
xlim(100, 250) + ylim(-250, 250) +
labs(title="Residuals vs fitted values for Model (a)",

x="Fitted values", y="Residuals")
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Residuals vs fitted values for Model (a)

ggplot(crab_data_all, aes(x=fits2, y=resids2)) +
geom_point() +
geom_abline(slope = 0, intercept = 0) +
xlim(100, 250) + ylim(-250, 250) +
labs(title="Residuals vs fitted values for Model (b)",

x="Fitted values", y="Residuals")
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Residuals vs fitted values for Model (b)

ggplot(crab_data_all, aes(x=fits3, y=resids3)) +
geom_point() +
geom_abline(slope = 0, intercept = 0) +
xlim(100, 250) + ylim(-250, 250) +
labs(title="Residuals vs fitted values for Model (c)",

x="Fitted values", y="Residuals")
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Solution: Based on the adjusted R2 values, the model allowing for nonparallel regression lines fits best. The
p-values for overall F-tests of model fit don’t provide any discriminating evidence since there are all small
enough to reject each null hypothesis at most typical α levels. The residual plot for model (a) might show
some curvature but otherwise, the residual plots for the other models are comparable and don’t provide much
discriminating information either.

Regression equation for crabs with ship noise treatment:
ŷ = (103.2703 − 34.3904) + (1.1869 + 2.0705)x1

Regression equation for crabs with ambient noise treatment:
ŷ = 103.2703 + 1.1869x1

The data set MathEnrollment contains data on total enrollments in mathematics courses at a small liberal
arts college where the academic year consists of two semesters, one in the fall and another in the spring. Use
this data set that spans from Fall 2001 to Spring 2012 to answer Problems 9 and 10.
library(Stat2Data)
data(MathEnrollment)
head(MathEnrollment)

## AYear Fall Spring
## 1 2001 259 246
## 2 2002 301 206
## 3 2003 343 288
## 4 2004 307 215
## 5 2005 286 230
## 6 2006 273 247
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Problem 9
(a) Fit a regression model for predicting spring enrollment (Spring) from fall enrollment (Fall). Identify

which year provides unusual data and determine how influential this data point is.

(b) Create a new data set by removing the influential data point you found in part (a) and then fit the
same regression model. Prepare the appropriate residual plots and comment on the slight problems
with the conditions for inference in this model. In particular, make sure that you plot the residuals
against order (or AYear) and comment on the trend.

(c) What percent of the variability in spring enrollment is explained by this simple linear model and what
is the conclusion of a test for the significance of a linear association between spring and fall enrollments?

## a
enroll_mod <- lm(Spring ~ Fall, MathEnrollment)

MathEnrollment_all <- MathEnrollment %>%
mutate(studresids = rstudent(enroll_mod),

fits = enroll_mod$fitted.values)

ggplot(MathEnrollment_all, aes(x=fits, y=studresids)) +
geom_point() +
labs(title="(Studentized) Residuals vs fitted values plot",

x="Fitted values", y="Studentized residuals") +
geom_hline(yintercept=0) +
geom_text(label=rownames(MathEnrollment_all), nudge_y=-0.15)
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(Studentized) Residuals vs fitted values plot

## this last part adds a label just below each data point
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MathEnrollment_all[3,]

## AYear Fall Spring studresids fits
## 3 2003 343 288 2.799773 239.0216
## b
MathEnrollment %>% dim

## [1] 11 3
MathEnrollment_subset <- MathEnrollment %>% filter(AYear!=2003)
MathEnrollment_subset %>% dim

## [1] 10 3
enroll_mod_subset <- lm(Spring ~ Fall, MathEnrollment_subset)
enroll_mod_subset %>% summary

##
## Call:
## lm(formula = Spring ~ Fall, data = MathEnrollment_subset)
##
## Residuals:
## Min 1Q Median 3Q Max
## -30.500 -17.353 -6.058 22.711 29.418
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 548.0094 106.7236 5.135 0.000891 ***
## Fall -1.0483 0.3805 -2.755 0.024870 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 24.94 on 8 degrees of freedom
## Multiple R-squared: 0.4868, Adjusted R-squared: 0.4227
## F-statistic: 7.589 on 1 and 8 DF, p-value: 0.02487
MathEnrollment_subset_all <- MathEnrollment_subset %>%

mutate(studresids = rstudent(enroll_mod_subset),
fits = enroll_mod_subset$fitted.values)

ggplot(MathEnrollment_subset_all, aes(x=fits, y=studresids)) +
geom_point() +
labs(title="(Studentized) Residuals vs fitted values plot",

x="Fitted values", y="Studentized residuals") +
geom_hline(yintercept=0)
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(Studentized) Residuals vs fitted values plot

ggplot(MathEnrollment_subset_all, aes(x=AYear, y=studresids)) +
geom_point() +
labs(title="(Studentized) Residuals vs temporal predictor",

x="Year", y="Studentized residuals") +
geom_hline(yintercept=0)
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(Studentized) Residuals vs temporal predictor

Solution:

(a) The data point corresponding to year 2003 has an unexpectedly high (studentized) residual. we can tell
how influential it is by assessing the same regression model applied to the full data set and then applied
to the subset that does not include this data point.

(b) The residual vs fitted values plot looks great however, enrollment data is temporal in nature which can
be seen in the residuals vs year plot. This latter plot indicates that the residuals increase with time. To
meet the independent noise assumption, the residuals should not show any clear trends or patterns like
this.

(c) model describes about 43% of the variability in Spring enrollment and the model fit is adequate at an
α = 0.05 level (all in all, this looks like a decent model if we ignore the problem of independent random
noise)

Problem 10
(a) Using the data set with the influential data point (from Problem 9 (a)) removed, now fit a MLR model

for predicting spring enrollment (Spring) from fall enrollment (Fall) and another predictor academic
year (AYear). Report the fitted regression equation.

(b) Create appropriate residual plots and comment on the conditions for inference. Did the slight problems
with the residual plots that you noticed in Problem 9 (b) disappear?

enroll_mod_subset2 <- lm(Spring ~ Fall + AYear, MathEnrollment_subset)
enroll_mod_subset2 %>% summary

##
## Call:
## lm(formula = Spring ~ Fall + AYear, data = MathEnrollment_subset)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -16.1945 -9.3982 0.3212 5.8503 18.2036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.172e+04 2.686e+03 -4.361 0.00331 **
## Fall -1.007e+00 2.041e-01 -4.933 0.00169 **
## AYear 6.107e+00 1.337e+00 4.566 0.00258 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.37 on 7 degrees of freedom
## Multiple R-squared: 0.871, Adjusted R-squared: 0.8342
## F-statistic: 23.64 on 2 and 7 DF, p-value: 0.0007704
MathEnrollment_subset_all2 <- MathEnrollment_subset %>%

mutate(studresids = rstudent(enroll_mod_subset2),
fits = enroll_mod_subset2$fitted.values)

ggplot(MathEnrollment_subset_all2, aes(x=AYear, y=studresids)) +
geom_point() +
labs(title="(Studentized) Residuals vs temporal predictor",

x="Year", y="Studentized residuals") +
geom_hline(yintercept=0)
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(Studentized) Residuals vs temporal predictor

Solution:
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(a) ˆSpring = −11720 − 1.007(Fall) + 6.107(AY ear)

(b) yes, including AYear as a predictor seems to eliminate the trend between year and the residuals that we
saw in the previous problem.
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