Formula Sheet for Quiz 2
 STAT 011

For a sample of data

If $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a data set of n observational units, we have the following:
Sample mean

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Sample variance

$$
\operatorname{Var}\left(x_{1}, \ldots, x_{n}\right)=s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Sample standard deviation

$$
s d\left(x_{1}, \ldots, x_{n}\right)=s=\sqrt{s^{2}}
$$

If we want to standardize the data set X, to create a new standardized data set $Z=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ we preform

$$
z_{i}=\frac{x_{i}-\bar{x}}{s d\left(x_{1}, \ldots, x_{n}\right)}, \text { for } i=1, \ldots, n
$$

Simple linear regression notation

The fitted/estimated regression model is $\hat{y}_{i}=b_{0}+b_{1} x_{i}$ where $b_{0}=\bar{y}-b_{1} \bar{x}$ and $b_{1}=\frac{s_{x y}}{\sqrt{s_{x} s_{y}}} \cdot \frac{s_{y}}{s_{x}}$.

$$
\text { Residual }=e=y-\hat{y}=\text { observed value }- \text { predicted value }
$$

Standard error of the residuals: $s_{e}=\sqrt{\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}}$

Sum of squares terms

$$
s_{x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}, \quad s_{y}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}, \quad s_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

Correlation coefficient

$$
r=\frac{s_{x y}}{\sqrt{s_{x} s_{y}}}
$$

Coefficient of determination/R-squared

$$
R=\left(\frac{s_{x y}}{\sqrt{s_{x} s_{y}}}\right)^{2}
$$

Probability

Five Laws of Probability

1) A probability is a number between 0 and 1 .

$$
0 \leq \operatorname{Pr}(A) \leq 1, \quad \text { for } A \in S
$$

2) The probability of the set of all possible outcomes of a trial is 1 .

$$
\operatorname{Pr}(S)=1
$$

3) The probability of an event not occuring is equal to 1 minus the probability the event does occur.

$$
\operatorname{Pr}\left(A^{C}\right)=1-\operatorname{Pr}(A)
$$

4) For any disjoint events in the sample space of a random variable, say, A and B, we have:

$$
\operatorname{Pr}(A \text { or } B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)
$$

Generalized version of the addition rule: For any events in the sample space,

$$
\operatorname{Pr}(A \text { or } B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

5) If an event A is independent of another event B, then:

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B)
$$

Generalized version of the multiplication rule: For any events in the sample space,

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B \mid A)
$$

Definition of conditional probability

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(A)}
$$

Law of total probability

$$
\operatorname{Pr}(B)=\operatorname{Pr}(B \text { and } A)+\operatorname{Pr}\left(B \text { and } A^{C}\right)
$$

Random Variables

For a random variable X,

$$
E(X)=\sum_{x \in S}[x \times \operatorname{Pr}(x)], \quad \operatorname{Var}(X)=\sum_{x \in S}\left[(x-E(X))^{2} \times \operatorname{Pr}(x)\right], \quad \text { st.dev }(X)=\sqrt{\operatorname{Var}(X)}
$$

For two random variables, X and Y :

$$
\operatorname{Cov}(X, Y)=E[(X-E(X)) \cdot(Y-E(Y))], \quad \operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Linear transformations of a random Variable

Suppose a is some number between $-\infty$ and $+\infty$. The following are properties of expectation and variance for linear transformations of a random variable X.

- $E(a X)=a E(X), \quad E(a \pm X)=a \pm E(X)$
- $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X), \quad \operatorname{Var}(a \pm X)=\operatorname{Var}(X)$

Linear transformations of two random variables

Suppose both X and Y are random variables that may or may not be related to one another. The following are properties of expectation and variance for linear transformations involving both random variables.

- $E(X \pm Y)=E(X) \pm E(Y)$
- $\operatorname{Var}(X \pm Y)=\operatorname{Var}(X)+\operatorname{Var}(Y) \pm 2 \operatorname{Cov}(X, Y)$
- If X and Y are independent random variables, then $\operatorname{Cov}(X, Y)=0$.

Normal Random Variable

If $X \sim N\left(\mu, \sigma^{2}\right)$ then $Z=\frac{X-\mu}{\sigma} \sim N(0,1)$.

Binomial Random Variable

If $X \sim \operatorname{Bin}(n, p)$ then $\operatorname{Pr}(X=x)=n C x \cdot p^{x} \cdot(1-p)^{n-x}$, where $n C x=\frac{n!}{x!(n-x)!}$.

